7 resultados para Avian blood
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
In vertebrates, efficient gas exchange depends primarily on establishment of a thin blood-gas barrier (BGB). The primordial air conduits of the developing avian lung are lined with a cuboidal epithelium that is ultimately converted to a squamous one that participates in the formation of the BGB. In the early stages, cells form intraluminal protrusions (aposomes) then transcellular double membranes separating the aposome from the basal part of the cell establish, unzip and sever the aposome from the cell. Additionally, better endowed cells squeeze out adjacent cells or such cells constrict spontaneously thus extruding the squeezed out aposome. Formation of vesicles or vacuoles below the aposome and fusion of such cavities with their neighboring cognates results in severing of the aposome. Augmentation of cavities and their subsequent fusion with the apical plasma membranes results in formation of numerous microfolds separating concavities on the apical part of the cell. Abscission of such microfolds results in a smooth squamous epithelium just before hatching.
Resumo:
Recent findings are reported about certain aspects of the structure and function of the mammalian and avian lungs that include (a) the architecture of the air capillaries (ACs) and the blood capillaries (BCs); (b) the pulmonary blood capillary circulatory dynamics; (c) the adaptive molecular, cellular, biochemical, compositional, and developmental characteristics of the surfactant system; (d) the mechanisms of the translocation of fine and ultrafine particles across the airway epithelial barrier; and (e) the particle-cell interactions in the pulmonary airways. In the lung of the Muscovy duck Cairina moschata, at least, the ACs are rotund structures that are interconnected by narrow cylindrical sections, while the BCs comprise segments that are almost as long as they are wide. In contrast to the mammalian pulmonary BCs, which are highly compliant, those of birds practically behave like rigid tubes. Diving pressure has been a very powerful directional selection force that has influenced phenotypic changes in surfactant composition and function in lungs of marine mammals. After nanosized particulates are deposited on the respiratory tract of healthy human subjects, some reach organs such as the brain with potentially serious health implications. Finally, in the mammalian lung, dendritic cells of the pulmonary airways are powerful agents in engulfing deposited particles, and in birds, macrophages and erythrocytes are ardent phagocytizing cellular agents. The morphology of the lung that allows it to perform different functions-including gas exchange, ventilation of the lung by being compliant, defense, and secretion of important pharmacological factors-is reflected in its "compromise design."
Resumo:
The documented data regarding the three-dimensional structure of the air capillaries (ACs), the ultimate sites of gas exchange in the avian lung is contradictory. Further, the mode of gas exchange, described as cross-current has not been clearly elucidated. We studied the temporal and spatial arrangement of the terminal air conduits of the chicken lung and their relationship with the blood capillaries (BCs) in embryos as well as the definitive architecture in adults. Several visualization techniques that included corrosion casting, light microscopy as well as scanning and transmission electron microscopy were used. Two to six infundibulae extend from each atrium and give rise to numerous ACs that spread centrifugally. Majority of the ACs are tubular structures that give off branches, which anastomose with their neighboring cognates. Some ACs have globular shapes and a few are blind-ending tapering tubes. During inauguration, the luminal aspects of the ACs are characterized by numerous microvillus-like microplicae, which are formed during the complex processes of cell attenuation and canalization of the ACs. The parabronchial exchange BCs, initially inaugurated as disorganized meshworks, are reoriented via pillar formation to lie predominantly orthogonal to the long axes of the ACs. The remodeling of the retiform meshworks by intussusceptive angiogenesis essentially accomplishes a cross-current system at the gas exchange interface in the adults, where BCs form ring-like patterns around the ACs, thus establishing a cross-current system. Our findings clarify the mode of gas exchange in the parabronchial mantle and illuminate the basis for the functional efficiency of the avian lung.
Resumo:
During vertebrate development, the lung inaugurates as an endodermal bud from the primitive foregut. Dichotomous subdivision of the bud results in arborizing airways that form the prospective gas exchanging chambers, where a thin blood-gas barrier (BGB) is established. In the mammalian lung, this proceeds through conversion of type II cells to type I cells, thinning, and elongation of the cells as well as extrusion of the lamellar bodies. Subsequent diminution of interstitial tissue and apposition of capillaries to the alveolar epithelium establish a thin BGB. In the noncompliant avian lung, attenuation proceeds through cell-cutting processes that result in remarkable thinning of the epithelial layer. A host of morphoregulatory molecules, including transcription factors such as Nkx2.1, GATA, HNF-3, and WNT5a; signaling molecules including FGF, BMP-4, Shh, and TFG- β and extracellular proteins and their receptors have been implicated. During normal physiological function, the BGB may be remodeled in response to alterations in transmural pressures in both blood capillaries and airspaces. Such changes are mitigated through rapid expression of the relevant genes for extracellular matrix proteins and growth factors. While an appreciable amount of information regarding molecular control has been documented in the mammalian lung, very little is available on the avian lung.
Resumo:
Angiogenesis, the development of new blood vessels from preexisting ones, is driven by coordinated signaling pathways governed by specific molecules, hemodynamic forces, and endothelial and periendothelial cells. The processes involve adhesion, migration, and survival machinery within the target endothelial and periendothelial cells. Factors that interfere with any of these processes may therefore influence angiogenesis either positively (pro-angiogenesis) or negatively (antiangiogenesis). The avian area vasculosa (AV) and the avian chorioallantoic membrane (CAM) are two useful tools for studying both angiogenesis and antiangiogenesis since they are amenable to both intravascular and topical administration of target, agents, are relatively rapid assays, and can be adapted very easily to study angiogenesis-dependent processes, such as tumor growth. Both models provide a physiological setting that permits investigation of pro-angiogenic and antiangiogenic agent interactions in vivo.
Resumo:
The anatomy of the domestic duck lung was studied macroscopically, by casting and by light, transmission, and scanning electron microscopy. The lung had four categories of secondary bronchi (SB), namely, the medioventral (MV, 4-5), laterodorsal (LD, 6-10), lateroventral (LV, 2-4), and posterior secondary bronchi (PO, 36-44). The neopulmonic parabronchi formed an intricate feltwork on the ventral third of the lung and inosculated those from the other SB. The lung parenchyma was organized into cylindrical parabronchi separated by thin septa containing blood vessels. Atria were shallow and well-fortified by epithelial ridges reinforced by smooth muscle bundles and gave rise to 2-6 elongate infundibulae. Air capillaries arose either directly from the atria or from infundibulae and were tubular or globular in shape with thin interconnecting branches. The newly described spatial disposition of the conducting air conduits closely resembles that of the chicken. This remarkable similarity between the categories, numbers, and 3D arrangement of the SB in the duck and chicken points to a convergence in function-oriented design. To illuminate airflow dynamics in the avian lung, precise directions of airflow in the various categories of SB and parabronchi need to be characterized.