54 resultados para Autonomic nervous system and lactic acid
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
ABSTRACT: Recent progress in neuroscience revealed diverse regions of the CNS which moderate autonomic and affective responses. The ventro-medial prefrontal cortex (vmPFC) plays a key role in these regulations. There is evidence that vmPFC activity is associated with cardiovascular changes during a motor task that are mediated by parasympathetic activity. Moreover, vmPFC activity makes important contributions to regulations of affective and stressful situations.This review selectively summarizes literature in which vmPFC activation was studied in healthy subjects as well as in patients with affective disorders. The reviewed literature suggests that vmPFC activity plays a pivotal role in biopsychosocial processes of disease. Activity in the vmPFC might link affective disorders, stressful environmental conditions, and immune function.
Resumo:
The risk of sudden death is increased in athletes with a male predominance. Regular physical activity increases vagal tone, and may protect against exercise-induced ventricular arrhythmias. We investigated training-related modulations of the autonomic nervous system in female and male endurance athletes. Runners of a 10-mile race were invited. Of 873 applicants, 68 female and 70 male athletes were randomly selected and stratified according to their average weekly training hours in a low (≤4 h) and high (>4 h) volume training group. Analysis of heart rate variability was performed over 24 h. Spectral components (high frequency [HF] and low frequency [LF] power in normalized units) were analyzed for hourly 5 min segments and averaged for day- and nighttime. One hundred and fourteen athletes (50 % female, mean age 42 ± 7 years) were included. No significant gender difference was observed for training volume and 10-mile race time. Over the 24-h period, female athletes exhibited a higher HF and lower LF power for each hourly time-point. Female gender and endurance training hours were independent predictors of a higher HF and lower LF power. In female athletes, higher training hours were associated with a higher HF and lower LF power during nighttime. In male athletes, the same was true during daytime. In conclusion, female and male athletes showed a different circadian pattern of the training-related increase in markers of vagal tone. For a comparable amount of training volume, female athletes maintained their higher markers of vagal tone, possibly indicating a superior protection against exercise-induced ventricular arrhythmias.
Resumo:
The brain is in many ways an immunologically and pharmacologically privileged site. The blood-brain barrier (BBB) of the cerebrovascular endothelium and its participation in the complex structure of the neurovascular unit (NVU) restrict access of immune cells and immune mediators to the central nervous system (CNS). In pathologic conditions, very well-organized immunologic responses can develop within the CNS, raising important questions about the real nature and the intrinsic and extrinsic regulation of this immune privilege. We assess the interactions of immune cells and immune mediators with the BBB and NVU in neurologic disease, cerebrovascular disease, and intracerebral tumors. The goals of this review are to outline key scientific advances and the status of the science central to both the neuroinflammation and CNS barriers fields, and highlight the opportunities and priorities in advancing brain barriers research in the context of the larger immunology and neuroscience disciplines. This review article was developed from reports presented at the 2011 Annual Blood-Brain Barrier Consortium Meeting.
Resumo:
Cavernous malformations (CCMs) are benign, well-circumscribed, and mulberry-like vascular malformations that may be found in the central nervous system in up to 0.5% of the population. Cavernous malformations can be sporadic or inherited. The common symptoms are epilepsy, hemorrhages, focal neurological deficits, and headaches. However, CCMs are often asymptomatic. The familiar form is associated with three gene loci, namely 7q21-q22 (CCM1), 7p13-p15 (CCM2), and 3q25.2-q27 (CCM3) and is inherited as an autosomal dominant trait with incomplete penetrance. The CCM genes are identified as Krit 1 (CCM1), MGC4607 (CCM2), and PDCD10 (CCM3). Here, we present the clinical and genetic features of CCMs in 19 Swiss families. Furthermore, surgical aspects in such families are also discussed.
Resumo:
Cavernous malformations (CM) of the central nervous system are vascular malformations responsible for symptoms such as seizures, headache, and neurological deficits: 25% of cases already present in childhood.
Resumo:
Since the development and prognosis of alcohol-induced liver disease (ALD) vary significantly with genetic background, identification of a genetic background-independent noninvasive ALD biomarker would significantly improve screening and diagnosis. This study explored the effect of genetic background on the ALD-associated urinary metabolome using the Ppara-null mouse model on two different backgrounds, C57BL/6 (B6) and 129/SvJ (129S), along with their wild-type counterparts. Reversed-phase gradient UPLC-ESI-QTOF-MS analysis revealed that urinary excretion of a number of metabolites, such as ethylsulfate, 4-hydroxyphenylacetic acid, 4-hydroxyphenylacetic acid sulfate, adipic acid, pimelic acid, xanthurenic acid, and taurine, were background-dependent. Elevation of ethyl-β-d-glucuronide and N-acetylglycine was found to be a common signature of the metabolomic response to alcohol exposure in wild-type as well as in Ppara-null mice of both strains. However, increased excretion of indole-3-lactic acid and phenyllactic acid was found to be a conserved feature exclusively associated with the alcohol-treated Ppara-null mouse on both backgrounds that develop liver pathologies similar to the early stages of human ALD. These markers reflected the biochemical events associated with early stages of ALD pathogenesis. The results suggest that indole-3-lactic acid and phenyllactic acid are potential candidates for conserved and pathology-specific high-throughput noninvasive biomarkers for early stages of ALD.
Resumo:
The glycine deportation system is an essential component of glycine catabolism in man whereby 400 to 800mg glycine per day are deported into urine as hippuric acid. The molecular escort for this deportation is benzoic acid, which derives from the diet and from gut microbiota metabolism of dietary precursors. Three components of this system, involving hepatic and renal metabolism, and renal active tubular secretion help regulate systemic and central nervous system levels of glycine. When glycine levels are pathologically high, as in congenital nonketotic hyperglycinemia, the glycine deportation system can be upregulated with pharmacological doses of benzoic acid to assist in normalization of glycine homeostasis. In congenital urea cycle enzymopathies, similar activation of the glycine deportation system with benzoic acid is useful for the excretion of excess nitrogen in the form of glycine. Drugs which can substitute for benzoic acid as substrates for the glycine deportation system have adverse reactions that may involve perturbations of glycine homeostasis. The cancer chemotherapeutic agent ifosfamide has an unacceptably high incidence of encephalopathy. This would appear to arise as a result of the production of toxic aldehyde metabolites which deplete ATP production and sequester NADH in the mitochondrial matrix, thereby inhibiting the glycine deportation system and causing de novo glycine synthesis by the glycine cleavage system. We hypothesize that this would result in hyperglycinemia and encephalopathy. This understanding may lead to novel prophylactic strategies for ifosfamide encephalopathy. Thus, the glycine deportation system plays multiple key roles in physiological and neurotoxicological processes involving glycine.
Resumo:
The central nervous system (CNS) comprises the brain, spinal cord, optic nerves and retina, and contains post-mitotic, delicate cells. As the rigid coverings of the CNS render swelling dangerous and destructive, inflammatory reactions must be carefully controlled in CNS tissues. Nevertheless, effector immune responses that protect the host during CNS infection still occur in the CNS. Here, we describe the anatomical and cellular basis of immune surveillance in the CNS, and explain how this shapes the unique immunology of these tissues. The Review focuses principally on insights gained from the study of autoimmune responses in the CNS and to a lesser extent on models of infectious disease. Furthermore, we propose a new model to explain how antigen-specific T cell responses occur in the CNS.
Resumo:
In the present in situ hybridization and immunocytochemical studies in the mouse central nervous system (CNS), a strong expression of spastin mRNA and protein was found in Purkinje cells and dentate nucleus in the cerebellum, in hippocampal principal cells and hilar neurons, in amygdala, substantia nigra, striatum, in the motor nuclei of the cranial nerves and in different layers of the cerebral cortex except piriform and entorhinal cortices where only neurons in layer II were strongly stained. Spastin protein and mRNA were weakly expressed in most of the thalamic nuclei. In selected human brain regions such as the cerebral cortex, cerebellum, hippocampus, amygdala, substania nigra and striatum, similar results were obtained. Electron microscopy showed spastin immunopositive staining in the cytoplasma, dendrites, axon terminals and nucleus. In the mouse pilocarpine model of status epilepticus and subsequent temporal lobe epilepsy, spastin expression disappeared in hilar neurons as early as at 2h during pilocarpine induced status epilepticus, and never recovered. At 7 days and 2 months after pilocarpine induced status epilepticus, spastin expression was down-regulated in granule cells in the dentate gyrus, but induced expression was found in reactive astrocytes. The demonstration of widespread distribution of spastin in functionally different brain regions in the present study may provide neuroanatomical basis to explain why different neurological, psychological disorders and cognitive impairment occur in patients with spastin mutation. Down-regulation or loss of spastin expression in hilar neurons may be related to their degeneration and may therefore initiate epileptogenetic events, leading to temporal lobe epilepsy.
Resumo:
STUDY OBJECTIVES: Periodic leg movements in sleep (PLMS) are frequently accompanied by arousals and autonomic activation, but the pathophysiologic significance of these manifestations is unclear. DESIGN: Changes in heart rate variability (HRV), HRV spectra, and electroencephalogram (EEG) spectra associated with idiopathic PLMS were compared with changes associated with isolated leg movements and respiratory-related leg movements during sleep. Furthermore, correlations between electromyographic activity, HRV changes, and EEG changes were assessed. SETTING: Sleep laboratory. PATIENTS: Whole-night polysomnographic studies of 24 subjects fulfilling the criteria of either periodic leg movements disorder (n = 8), obstructive sleep apnea syndrome (n = 7), or normal polysomnography (n = 9) were used. MEASUREMENTS AND RESULTS: Spectral HRV changes started before all EEG changes and up to 6 seconds before the onset of all types of leg movements. An initial weak autonomic activation was followed by a sympathetic activation, an increase of EEG delta activity, and finally a progression to increased higher-frequency EEG rhythms. After movement onset, HRV indicated a vagal activation, and, the EEG, a decrease in spindle activity. Sympathetic activation, as measured by HRV spectra, was greater for PLMS than for all other movement types. In EEG, gamma synchronization began 1 to 2 seconds earlier for isolated leg movements and respiratory-related leg movements than for PLMS. Significant correlations were found between autonomic activations and electromyographic activity, as well as between autonomic activations and EEG delta activity, but not between higher-frequency EEG rhythms and EMG activity or HRV changes. CONCLUSIONS: These results suggest a primary role of the sympathetic nervous system in the generation of PLMS.
Resumo:
Patients with diabetes mellitus (DM) often have alterations of the autonomic nervous system (ANS), even early in their disease course. Previous research has not evaluated whether these changes may have consequences on adaptation mechanisms in DM, e.g. to mental stress. We therefore evaluated whether patients with DM who already had early alterations of the ANS reacted with an abnormal regulatory pattern to mental stress. We used the spectral analysis technique, known to be valuable and reliable in the investigation of disturbances of the ANS. We investigated 34 patients with DM without clinical evidence of ANS dysfunction (e.g. orthostatic hypotension) and 44 normal control subjects (NC group). No patients on medication known to alter ANS responses were accepted. The investigation consisted of a resting state evaluation and a mental stress task (BonnDet). In basal values, only the 21 patients with type 2 DM were different in respect to body mass index and systolic blood pressure. In the study parameters we found significantly lower values in resting and mental stress spectral power of mid-frequency band (known to represent predominantly sympathetic influences) and of high-frequency and respiration bands (known to represent parasympathetic influences) in patients with DM (types 1 and 2) compared with NC group (5.3 +/- 1.2 ms2 vs. 6.1 +/- 1.3 ms2, and 5.5 +/- 1.6 ms2 vs. 6.2 +/- 1.5 ms2, and 4.6 +/- 1.7 ms2 vs. 6.2 +/- 1.5 ms2, for resting values respectively; 4.7 +/- 1.4 ms2 vs. 5.9 +/- 1.2 ms2, and 4.6 +/- 1.9 ms2 vs. 5.6 +/- 1.7 ms2, and 3.7 +/- 2.1 ms2 vs. 5.6 +/- 1.7 ms2, for stress values respectively; M/F ratio 6/26 vs. 30/14). These differences remained significant even when controlled for age, sex, and body weight. However, patients with DM type 2 (and significantly higher body weight) showed only significant values in mental stress modulus values. There were no specific group effects in the patients with DM in adaptation mechanisms to mental stress compared with the NC group. These findings demonstrate that power spectral examinations at rest are sufficiently reliable to diagnose early alterations in ANS in patients with DM. The spectral analysis technique is sensitive and reliable in investigation of ANS in patients with DM without clinically symptomatic autonomic dysfunction.
Resumo:
Creatine kinase catalyses the reversible transphosphorylation of creatine by ATP. In the cell, creatine kinase isoenzymes are specifically localized at strategic sites of ATP consumption to efficiently regenerate ATP in situ via phosphocreatine or at sites of ATP generation to build-up a phosphocreatine pool. Accordingly, the creatine kinase/phosphocreatine system plays a key role in cellular energy buffering and energy transport, particularly in cells with high and fluctuating energy requirements like neurons. Creatine kinases are expressed in the adult and developing human brain and spinal cord, suggesting that the creatine kinase/phosphocreatine system plays a significant role in the central nervous system. Functional impairment of this system leads to a deterioration in energy metabolism, which is phenotypic for many neurodegenerative and age-related diseases. Exogenous creatine supplementation has been shown to reduce neuronal cell loss in experimental paradigms of acute and chronic neurological diseases. In line with these findings, first clinical trials have shown beneficial effects of therapeutic creatine supplementation. Furthermore, creatine was reported to promote differentiation of neuronal precursor cells that might be of importance for improving neuronal cell replacement strategies. Based on these observations there is growing interest on the effects and functions of this compound in the central nervous system. This review gives a short excursion into the basics of the creatine kinase/phosphocreatine system and aims at summarizing findings and concepts on the role of creatine kinase and creatine in the central nervous system with special emphasis on pathological conditions and the positive effects of creatine supplementation.
Resumo:
In multiple sclerosis and in its animal model experimental autoimmune encephalomyelitis (EAE), inflammatory cells migrate across the highly specialized endothelial blood-brain barrier (BBB) and gain access to the central nervous system (CNS). It is well established that leukocyte recruitment across this vascular bed is unique due to the predominant involvement of alpha4-integrins in mediating the initial contact to as well as firm adhesion with the endothelium. In contrast, the involvement of the selectins, L-selectin, E- and P-selectin and their respective carbohydrate ligands such as P-selectin glycoprotein (PSGL)-1 in this process has been controversially discussed. Intravital microscopic analysis of immune cell interaction with superficial brain vessels demonstrates a role for E- and P-selectin and their common ligand PSGL-1 in lymphocyte rolling. However, E- and P-selectin-deficient SJL- or C57Bl/6 mice or PSGL-1-deficient C57Bl/6 mice develop EAE indistinguishable from wild-type mice. Considering these apparently discrepant observations, it needs to be discussed whether the molecular mechanisms involved in leukocyte trafficking across superficial brain vessels are irrelevant for EAE pathogenesis or whether the therapeutic efficacy of targeting alpha4-integrins in EAE is truly dependent on the inhibition of leukocyte trafficking across the BBB.
Resumo:
OBJECTIVES: In fetal ultrasound imaging, teaching and experience are of paramount importance to improve prenatal detection rates of fetal abnormalities. Yet both aspects depend on exposure to normal and, in particular, abnormal 'specimens'. We aimed to generate a number of simple virtual reality (VR) objects of the fetal central nervous system for use as educational tools. METHODS: We applied a recently proposed algorithm for the generation of fetal VR object movies to the normal and abnormal fetal brain and spine. Interactive VR object movies were generated from ultrasound volume data from normal fetuses and fetuses with typical brain or spine anomalies. Pathognomonic still images from all object movies were selected and annotated to enable recognition of these features in the object movies. RESULTS: Forty-six virtual reality object movies from 22 fetuses (two with normal and 20 with abnormal brains) were generated in an interactive display format (QuickTime) and key images were annotated. The resulting .mov files are available for download from the website of this journal. CONCLUSIONS: VR object movies can be generated from educational ultrasound volume datasets, and may prove useful for teaching and learning normal and abnormal fetal anatomy.