10 resultados para Automatized Indexing
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Identity is a recurrent research interest in current sociolinguistics and it is also of primary interest in digital discourse studies. Identity construction is closely related to stance and style (Eckert 2008; Jaffe 2009), which are fundamental concepts for understanding the language use and its social meanings in the case of social media users from Malaga. As the specific social meanings of a set of dialect features constitute a style, this style and the social (and technological) context in which the variants are used determine the meanings that are actually associated with each variant. Hence, every variant has its own indexical field covering any number of potential meanings. The Spanish spoken in Malaga, as Andalusian Spanish in general, was in the past often times considered an incorrect, low prestige variety of Spanish which was strongly associated with the poor, rural, backward South of Spain. This southern Spanish variety is easily recognised because of its innovative phonetic features that diverge from the national standard. In this study several of these phonetic dialect features are looked at, which users from Malaga purposefully employ (in a textualised form) on social media for identity construction. This identity construction is analysed through interactional and ethnographic methods: A perception and an imitation task served as key data and were supplemented by answers to a series of open questions. Further data stems from visual, multimodal elements (e.g. images, photos, videos) posted by users from the city of Malaga. The program TAMS Analyzer was used for data codification and analysis. Results show that certain features that in spoken language are considered rural and old-fashioned, acquire new meaning on social media, namely of urbanity and fashion. Moreover, these features, if used online, are associated with hipsters. That is, the “cool” social media index the “coolness” of the dialect features in question and, thus, the mediatisation makes their indexical fields even more multi-layered and dynamic. Social media users from Malaga performatively employ these stylised dialect features to project a hipster identity and certain related stances.
Resumo:
Software visualizations can provide a concise overview of a complex software system. Unfortunately, as software has no physical shape, there is no `natural' mapping of software to a two-dimensional space. As a consequence most visualizations tend to use a layout in which position and distance have no meaning, and consequently layout typically diverges from one visualization to another. We propose an approach to consistent layout for software visualization, called Software Cartography, in which the position of a software artifact reflects its vocabulary, and distance corresponds to similarity of vocabulary. We use Latent Semantic Indexing (LSI) to map software artifacts to a vector space, and then use Multidimensional Scaling (MDS) to map this vector space down to two dimensions. The resulting consistent layout allows us to develop a variety of thematic software maps that express very different aspects of software while making it easy to compare them. The approach is especially suitable for comparing views of evolving software, as the vocabulary of software artifacts tends to be stable over time. We present a prototype implementation of Software Cartography, and illustrate its use with practical examples from numerous open-source case studies.
Resumo:
Purpose Physiological respiratory motion of tumors growing in the lung can be corrected with respiratory gating when treated with radiotherapy (RT). The optimal respiratory phase for beam-on may be assessed with a respiratory phase optimizer (RPO), a 4D image processing software developed with this purpose. Methods and Materials Fourteen patients with lung cancer were included in the study. Every patient underwent a 4D-CT providing ten datasets of ten phases of the respiratory cycle (0-100% of the cycle). We defined two morphological parameters for comparison of 4D-CT images in different respiratory phases: tumor-volume to lung-volume ratio and tumor-to-spinal cord distance. The RPO automatized the calculations (200 per patient) of these parameters for each phase of the respiratory cycle allowing to determine the optimal interval for RT. Results Lower lobe lung tumors not attached to the diaphragm presented with the largest motion with breathing. Maximum inspiration was considered the optimal phase for treatment in 4 patients (28.6%). In 7 patients (50%), however, the RPO showed a most favorable volumetric and spatial configuration in phases other than maximum inspiration. In 2 cases (14.4%) the RPO showed no benefit from gating. This tool was not conclusive in only one case. Conclusions The RPO software presented in this study can help to determine the optimal respiratory phase for gated RT based on a few simple morphological parameters. Easy to apply in daily routine, it may be a useful tool for selecting patients who might benefit from breathing adapted RT.
Resumo:
Case series are a commonly reported study design, but the label "case series" is used inconsistently and sometimes incorrectly. Mislabeling impairs the appropriate indexing and sorting of evidence. This article tries to clarify the concept of case series and proposes a way to distinguish them from cohort studies. In a cohort study, patients are sampled on the basis of exposure and are followed over time, and the occurrence of outcomes is assessed. A cohort study may include a comparison group, although this is not a necessary feature. A case series may be a study that samples patients with both a specific outcome and a specific exposure, or one that samples patients with a specific outcome and includes patients regardless of whether they have specific exposures. Whereas a cohort study, in principle, enables the calculation of an absolute risk or a rate for the outcome, such a calculation is not possible in a case series.
Resumo:
Software visualizations can provide a concise overview of a complex software system. Unfortunately, since software has no physical shape, there is no “natural“ mapping of software to a two-dimensional space. As a consequence most visualizations tend to use a layout in which position and distance have no meaning, and consequently layout typical diverges from one visualization to another. We propose a consistent layout for software maps in which the position of a software artifact reflects its \emph{vocabulary}, and distance corresponds to similarity of vocabulary. We use Latent Semantic Indexing (LSI) to map software artifacts to a vector space, and then use Multidimensional Scaling (MDS) to map this vector space down to two dimensions. The resulting consistent layout allows us to develop a variety of thematic software maps that express very different aspects of software while making it easy to compare them. The approach is especially suitable for comparing views of evolving software, since the vocabulary of software artifacts tends to be stable over time.
Resumo:
It has been repeatedly demonstrated that athletes often choke in high pressure situations because anxiety can affect attention regulation and in turn performance. There are two competing theoretical approaches to explain the negative anxiety-performance relationship. According to skillfocus theories, anxious athletes’ attention is directed at how to execute the sport-specific movements which interrupts execution of already automatized movements in expert performers. According to distraction theories, anxious athletes are distractible and focus less on the relevant stimuli. We tested these competing assumptions in a between-subject design, as semi-professional tennis players were either assigned to an anxiety group (n = 25) or a neutral group (n = 28), and performed a series of second tennis serves into predefined target areas. As expected, anxiety was negatively related to serve accuracy. However, mediation analyses with the bootstrapping method revealed that this relationship was fully mediated by self-reported distraction and not by skill-focus.
Resumo:
Childhood traumatic events may lead to long-lasting psychological effects and contribute to the development of complex posttraumatic sequelae. These might be captured by the diagnostic concept of complex posttraumatic stress disorder (CPTSD) as an alternative to classic posttraumatic stress disorder (PTSD). CPTSD comprises a further set of symptoms in addition to those of PTSD, namely, changes in affect, self, and interpersonal relationships. Previous empirical research on CPTSD has focused on middle-aged adults but not on older adults. Moreover, predictor models of CPTSD are still rare. The current study investigated the association between traumatic events in childhood and complex posttraumatic stress symptoms in older adults. The mediation of this association by 2 social-interpersonal factors (social acknowledgment as a survivor and dysfunctional disclosure) was investigated. These 2 factors focus on the perception of acknowledgment by others and either the inability to disclose traumatic experiences or the ability to do so only with negative emotional reactions. A total of 116 older individuals (age range = 59–98 years) who had experienced childhood traumatic events completed standardized self-report questionnaires indexing childhood trauma, complex trauma sequelae, social acknowledgment, and dysfunctional disclosure of trauma. The results showed that traumatic events during childhood were associated with later posttraumatic stress symptoms but with classic rather than complex symptoms. Social acknowledgment and dysfunctional disclosure partially mediated this relationship. These findings suggest that childhood traumatic stress impacts individuals across the life span and may be associated with particular adverse psychopathological consequences.
Resumo:
High-pressure powder X-ray diffraction is a fundamental technique for investigating structural responses to externally applied force. Synchrotron sources and two-dimensional detectors are required. In contrast to this conventional setup, high-resolution beamlines equipped with one-dimensional detectors could offer much better resolved peaks but cannot deliver accurate structure factors because they only sample a small portion of the Debye rings, which are usually inhomogeneous and spotty because of the small amount of sample. In this study, a simple method to overcome this problem is presented and successfully applied to solving the structure of an L-serine polymorph from powder data. A comparison of the obtained high-resolution high-pressure data with conventional data shows that this technique, providing up to ten times better angular resolution, can be of advantage for indexing, for lattice parameter refinement, and even for structure refinement and solution in special cases.
Resumo:
Intensive efforts in recent years to develop and commercialize in vitro alternatives in the field of risk assessment have yielded new promising two- and three dimensional (3D) cell culture models. Nevertheless, a realistic 3D in vitro alveolar model is not available yet. Here we report on the biofabrication of the human air-blood tissue barrier analogue composed of an endothelial cell, basement membrane and epithelial cell layer by using a bioprinting technology. In contrary to the manual method, we demonstrate that this technique enables automatized and reproducible creation of thinner and more homogeneous cell layers, which is required for an optimal air-blood tissue barrier. This bioprinting platform will offer an excellent tool to engineer an advanced 3D lung model for high-throughput screening for safety assessment and drug efficacy testing.