60 resultados para Automatic merging of lexical resources

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

As more and more open-source software components become available on the internet we need automatic ways to label and compare them. For example, a developer who searches for reusable software must be able to quickly gain an understanding of retrieved components. This understanding cannot be gained at the level of source code due to the semantic gap between source code and the domain model. In this paper we present a lexical approach that uses the log-likelihood ratios of word frequencies to automatically provide labels for software components. We present a prototype implementation of our labeling/comparison algorithm and provide examples of its application. In particular, we apply the approach to detect trends in the evolution of a software system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lexical items like and well can serve as discourse markers (DMs), but can also play numerous other roles, such as verb or adverb. Identifying the occurrences that function as DMs is an important step for language understanding by computers. In this study, automatic classifiers using lexical, prosodic/positional and sociolinguistic features are trained over transcribed dialogues, manually annotated with DM information. The resulting classifiers improve state-of-the-art performance of DM identification, at about 90% recall and 79% precision for like (84.5% accuracy, κ = 0.69), and 99% recall and 98% precision for well (97.5% accuracy, κ = 0.88). Automatic feature analysis shows that lexical collocations are the most reliable indicators, followed by prosodic/positional features, while sociolinguistic features are marginally useful for the identification of DM like and not useful for well. The differentiated processing of each type of DM improves classification accuracy, suggesting that these types should be treated individually.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Delineating brain tumor boundaries from magnetic resonance images is an essential task for the analysis of brain cancer. We propose a fully automatic method for brain tissue segmentation, which combines Support Vector Machine classification using multispectral intensities and textures with subsequent hierarchical regularization based on Conditional Random Fields. The CRF regularization introduces spatial constraints to the powerful SVM classification, which assumes voxels to be independent from their neighbors. The approach first separates healthy and tumor tissue before both regions are subclassified into cerebrospinal fluid, white matter, gray matter and necrotic, active, edema region respectively in a novel hierarchical way. The hierarchical approach adds robustness and speed by allowing to apply different levels of regularization at different stages. The method is fast and tailored to standard clinical acquisition protocols. It was assessed on 10 multispectral patient datasets with results outperforming previous methods in terms of segmentation detail and computation times.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Integration of indigenous knowledge and ethnoscientific approaches into contemporary frameworks for conservation and sustainable management of natural resources will become increasingly important in policies on an international and national level. We set the scene on how this can be done by exploring the key conditions and dimensions of a dialogue between ‘ontologies’ and the roles, which ethnosciences could play in this process. First, the roles which ethnosciences in the context of sustainable development were analysed, placing emphasis on the implications arising when western sciences aspire to relate to indigenous forms of knowledge. Secondly, the contributions of ethnosciences to such an ‘inter-ontological dialogue’ were explored, based on an ethnoecological study of the encounter of sciences and indigenous knowledge in the Andes of Bolivia, and reviewed experiences from mangrove systems in Kenya, India and Sri Lanka, and from case-studies in other ecosystems world-wide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently developed computer applications provide tools for planning cranio-maxillofacial interventions based on 3-dimensional (3D) virtual models of the patient's skull obtained from computed-tomography (CT) scans. Precise knowledge of the location of the mid-facial plane is important for the assessment of deformities and for planning reconstructive procedures. In this work, a new method is presented to automatically compute the mid-facial plane on the basis of a surface model of the facial skeleton obtained from CT. The method matches homologous surface areas selected by the user on the left and right facial side using an iterative closest point optimization. The symmetry plane which best approximates this matching transformation is then computed. This new automatic method was evaluated in an experimental study. The study included experienced and inexperienced clinicians defining the symmetry plane by a selection of landmarks. This manual definition was systematically compared with the definition resulting from the new automatic method: Quality of the symmetry planes was evaluated by their ability to match homologous areas of the face. Results show that the new automatic method is reliable and leads to significantly higher accuracy than the manual method when performed by inexperienced clinicians. In addition, the method performs equally well in difficult trauma situations, where key landmarks are unreliable or absent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Besides DNA, dental radiographs play a major role in the identification of victims in mass casualties or in corpses with major postmortem alterations. Computed tomography (CT) is increasingly applied in forensic investigations and is used to scan the dentition of deceased persons within minutes. We investigated different restoration materials concerning their radiopacity in CT for dental identification purposes. METHODS: Extracted teeth with different filling materials (composite, amalgam, ceramic, temporary fillings) were CT scanned. Radiopacities of the filling materials were analyzed in extended CT scale images. RESULTS: Radiopacity values ranged from 6000-8500HU (temporary fillings), 4500-17000HU (composite fillings) and >30710HU (Amalgam and Gold). The values were used to define presets for a 3D colored volume rendering software. CONCLUSIONS: The effects of filling material caused streak artifacts could be distinctively reduced for the assessment of the dental status and a postprocessing algorithm was introduced that allows for 3D color encoded visualization and discrimination of different dental restorations based on postmortem CT data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electroencephalograms (EEG) are often contaminated with high amplitude artifacts limiting the usability of data. Methods that reduce these artifacts are often restricted to certain types of artifacts, require manual interaction or large training data sets. Within this paper we introduce a novel method, which is able to eliminate many different types of artifacts without manual intervention. The algorithm first decomposes the signal into different sub-band signals in order to isolate different types of artifacts into specific frequency bands. After signal decomposition with principal component analysis (PCA) an adaptive threshold is applied to eliminate components with high variance corresponding to the dominant artifact activity. Our results show that the algorithm is able to significantly reduce artifacts while preserving the EEG activity. Parameters for the algorithm do not have to be identified for every patient individually making the method a good candidate for preprocessing in automatic seizure detection and prediction algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Automatic identification and extraction of bone contours from X-ray images is an essential first step task for further medical image analysis. In this paper we propose a 3D statistical model based framework for the proximal femur contour extraction from calibrated X-ray images. The automatic initialization is solved by an estimation of Bayesian network algorithm to fit a multiple component geometrical model to the X-ray data. The contour extraction is accomplished by a non-rigid 2D/3D registration between a 3D statistical model and the X-ray images, in which bone contours are extracted by a graphical model based Bayesian inference. Preliminary experiments on clinical data sets verified its validity