59 resultados para Automated algae counting
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Manual counting of bacterial colony forming units (CFUs) on agar plates is laborious and error-prone. We therefore implemented a colony counting system with a novel segmentation algorithm to discriminate bacterial colonies from blood and other agar plates.A colony counter hardware was designed and a novel segmentation algorithm was written in MATLAB. In brief, pre-processing with Top-Hat-filtering to obtain a uniform background was followed by the segmentation step, during which the colony images were extracted from the blood agar and individual colonies were separated. A Bayes classifier was then applied to count the final number of bacterial colonies as some of the colonies could still be concatenated to form larger groups. To assess accuracy and performance of the colony counter, we tested automated colony counting of different agar plates with known CFU numbers of S. pneumoniae, P. aeruginosa and M. catarrhalis and showed excellent performance.
Resumo:
Four different preparation and counting methods for biochemical varves were compared in order to assess counting errors and to standardize these techniques. The properties of two embedding methods, namely the shock-freeze, freeze-dry and the water-acetone-epoxy-exchange method, are discussed. Varve counts were carried out on fresh sediment and on sediment thin-sections, on the latter by manual and by automated counting using image-analysis software. Counting on fresh sediment and using image-analysis generally underestimated the number of varves, especially in sections with inconspicuous varves. A comparison between multiple varve counts carried out by a single analyst and different analysts showed no significant differences in the mean varve counts.
Resumo:
Robust and accurate identification of intervertebral discs from low resolution, sparse MRI scans is essential for the automated scan planning of the MRI spine scan. This paper presents a graphical model based solution for the detection of both the positions and orientations of intervertebral discs from low resolution, sparse MRI scans. Compared with the existing graphical model based methods, the proposed method does not need a training process using training data and it also has the capability to automatically determine the number of vertebrae visible in the image. Experiments on 25 low resolution, sparse spine MRI data sets verified its performance.
Resumo:
This paper presents an automated solution for precise detection of fiducial screws from three-dimensional (3D) Computerized Tomography (CT)/Digital Volume Tomography (DVT) data for image-guided ENT surgery. Unlike previously published solutions, we regard the detection of the fiducial screws from the CT/DVT volume data as a pose estimation problem. We thus developed a model-based solution. Starting from a user-supplied initialization, our solution detects the fiducial screws by iteratively matching a computer aided design (CAD) model of the fiducial screw to features extracted from the CT/DVT data. We validated our solution on one conventional CT dataset and on five DVT volume datasets, resulting in a total detection of 24 fiducial screws. Our experimental results indicate that the proposed solution achieves much higher reproducibility and precision than the manual detection. Further comparison shows that the proposed solution produces better results on the DVT dataset than on the conventional CT dataset.
Resumo:
To evaluate the capability of spectral computed tomography (CT) to improve the characterization of cystic high-attenuation lesions in a renal phantom and to test the hypothesis that spectral CT will improve the differentiation of cystic renal lesions with high protein content and those that have undergone hemorrhage or malignant contrast-enhancing transformation.
Resumo:
Vertebroplasty is a minimally invasive procedure with many benefits; however, the procedure is not without risks and potential complications, of which leakage of the cement out of the vertebral body and into the surrounding tissues is one of the most serious. Cement can leak into the spinal canal, venous system, soft tissues, lungs and intradiscal space, causing serious neurological complications, tissue necrosis or pulmonary embolism. We present a method for automatic segmentation and tracking of bone cement during vertebroplasty procedures, as a first step towards developing a warning system to avoid cement leakage outside the vertebral body. We show that by using active contours based on level sets the shape of the injected cement can be accurately detected. The model has been improved for segmentation as proposed in our previous work by including a term that restricts the level set function to the vertebral body. The method has been applied to a set of real intra-operative X-ray images and the results show that the algorithm can successfully detect different shapes with blurred and not well-defined boundaries, where the classical active contours segmentation is not applicable. The method has been positively evaluated by physicians.
Resumo:
Carbohydrate counting is a principal strategy in nutritional management of type 1 diabetes. The Nutri-Learn buffet (NLB) is a new computer-based tool for patient instruction in carbohydrate counting. It is based on food dummies made of plastic equipped with a microchip containing relevant food content data. The tool enables the dietician to assess the patient's food counting abilities and the patient to learn in a hands-on interactive manner to estimate food contents such as carbohydrate content.
Resumo:
An automated algorithm for detection of the acetabular rim was developed. Accuracy of the algorithm was validated in a sawbone study and compared against manually conducted digitization attempts, which were established as the ground truth. The latter proved to be reliable and reproducible, demonstrated by almost perfect intra- and interobserver reliability. Validation of the automated algorithm showed no significant difference compared to the manually acquired data in terms of detected version and inclination. Automated detection of the acetabular rim contour and the spatial orientation of the acetabular opening plane can be accurately achieved with this algorithm.