22 resultados para Attila, king of the Huns.

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is a retrospective clinical, radiological and patient outcome assessment of 21 consecutive patients with King 1 idiopathic adolescent scoliosis treated by short anterior selective fusion of the major thoracolumbar/lumbar (TL/L) curve. Three-dimensional changes of both curves, changes in trunk balance and rib hump were evaluated. The minimal follow-up was 24 months (max. 83). The Cobb angle of the TL/L curve was 52 degrees (45-67 degrees) with a flexibility of 72% (40-100%). The average length of the main curve was 5 (3-8) segments. An average of 3 (2-4) segments was fused using rigid single rod implants with side-loading screws. The Cobb angle of the thoracic curve was 33 degrees (18-50 degrees) with a flexibility of 69% (29-100%). The thoracic curve in bending was less than 20 degrees in 17 patients, and 20-25 degrees in 4 patients. In the TL/L curve there was an improvement of the Cobb angle of 67%, of the apex vertebral rotation of 51% and of the apex vertebral translation of 74%. The Cobb angle of the thoracic curve improved 29% spontaneously. Shoulder balance improved significantly from an average preoperative imbalance of 14.5-3.1 mm at the last follow-up. Seventy-five percent of the patients with preoperative positive shoulder imbalance (higher on the side of the thoracic curve) had levelled shoulders at the last follow-up. C7 offset improved from a preoperative 19.8 (0-40) to 4.8 (0-18) mm at the last follow-up. There were no significant changes in rotation, translation of the thoracic curve and the clinical rib hump. There were no significant changes in thoracic kyphosis or lumbar lordosis. The average score of the SRS-24 questionnaire at the last follow-up was 91 points (max. 120). We conclude that short anterior selective fusion of the TL/L curve in King 1 scoliosis with a thoracic curve bending to 25 degrees or less (Type 5 according to Lenke classification) results in a satisfactory correction and a balanced spine. Short fusions leave enough mobile lumbar segments for the establishment of global spinal balance. A positive shoulder imbalance is not a contraindication for this procedure. Structural interbody grafts are not necessary to maintain lumbar lordosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To compare the effectiveness and safety of intraarticular high-molecular hylan with standard preparations of hyaluronic acids in osteoarthritis of the knee. METHODS: We performed a systematic review and meta-analysis of randomized controlled trials comparing hylan with a hyaluronic acid in patients with knee osteoarthritis. Trials were identified by systematic searches of Central, Medline, EMBase, Cinahl, the Food and Drug Administration, and Science Citation Index supplemented by hand searches of conference proceedings and reference lists (last update November 2006). Literature screening and data extraction were performed in duplicate. Effect sizes were calculated from differences in means of pain-related outcomes between treatment and control groups at the end of the trial, divided by the pooled standard deviation. Trials were combined using random-effects meta-analysis. RESULTS: Thirteen trials with a pooled total of 2,085 patients contributed to the meta-analysis. The pooled effect size was -0.27 (95% confidence interval [95% CI] -0.55, 0.01), favoring hylan, but between-trial heterogeneity was high (I(2) = 88%). Trials with blinded patients, adequate concealment of allocation, and an intent-to-treat analysis had pooled effect sizes near null. The meta-analyses on safety revealed an increased risk associated with hylan for any local adverse events (relative risk [RR] 1.91; 95% CI 1.04, 3.49; I(2) = 28%) and for flares (RR 2.04; 95% CI 1.18, 3.53; I(2) = 0%). CONCLUSION: Given the likely lack of a superior effectiveness of hylan over hyaluronic acids and the increased risk of local adverse events associated with hylan, we discourage the use of intraarticular hylan in patients with knee osteoarthritis in clinical research or practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Continual surveillance based on patch test results has proved useful for the identification of contact allergy. OBJECTIVES: To provide a current view on the spectrum of contact allergy to important sensitizers across Europe. PATIENTS/METHODS: Clinical and patch test data of 19 793 patients patch tested in 2005/2006 in the 31 participating departments from 10 European countries (the European Surveillance System on Contact Allergies' (ESSCA) www.essca-dc.org) were descriptively analysed, aggregated to four European regions. RESULTS: Nickel sulfate remains the most common allergen with standardized prevalences ranging from 19.7% (central Europe) to 24.4% (southern Europe). While a number of allergens shows limited variation across the four regions, such as Myroxylon pereirae (5.3-6.8%), cobalt chloride (6.2-8.8%) or thiuram mix (1.7-2.4%), the differences observed with other allergens may hint on underlying differences in exposures, for example: dichromate 2.4% in the UK (west) versus 4.5-5.9% in the remaining EU regions, methylchloroisothiazolinone/methylisothiazolinone 4.1% in the South versus 2.1-2.7% in the remaining regions. CONCLUSIONS: Notwithstanding residual methodological variation (affecting at least some 'difficult' allergens) tackled by ongoing efforts for standardization, a comparative analysis as presented provides (i) a broad overview on contact allergy frequencies and (ii) interesting starting points for further, in-depth investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the STrengthening the Reporting of OBservational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modelling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed, but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct or analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the STrengthening the Reporting of OBservational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modelling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence, the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association (STREGA) studies initiative builds on the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modeling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed, but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modelling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information into the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the STrengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modeling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and issues of data volume that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modeling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modeling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.