28 resultados para Attentional visual fields
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Visual perception is not identical in the upper and lower visual hemifields. The mechanisms behind this difference can be found at the retinal, cortical, or higher attentional level. In this study, a new visual test battery, that involves real-time comparisons of complex visual stimuli, such as shape of objects, and speed of moving dot patterns, in the upper and lower visual hemifields, is presented. This study represents, to our knowledge, the first to implement such a visual test battery in an immersive environment composed of a hemisphere, in order to present visual stimuli in precise regions of the visual field. Ten healthy volunteers were tested in this pilot study. The results showed a higher accuracy in the image matching when the visual test was performed in the lower visual hemifield.
Resumo:
We present the case of a 60 year old male patient with incidentally detected visual abnormalities. Detailed personal history revealed a hypogonadism that had been present for several years. Further investigations established the diagnosis of an infiltrative macroadenoma. Medical treatment with cabergoline led to a rapid regression of ophthalmologic symptoms and, subsequently, of tumor size. In male subjects symptoms of hypogonadism are often reported only late in the course of the disease, thereby leading to a generally larger tumor size at the point of diagnosis. In contrast to other pituitary tumors that are mainly treated by surgery, medical treatment with dopamine agonists is the principal therapeutic option in prolactinomas.
Resumo:
Repetitive transcranial magnetic stimulation (rTMS) applied over the right posterior parietal cortex (PPC) in healthy participants has been shown to trigger a significant rightward shift in the spatial allocation of visual attention, temporarily mimicking spatial deficits observed in neglect. In contrast, rTMS applied over the left PPC triggers a weaker or null attentional shift. However, large interindividual differences in responses to rTMS have been reported. Studies measuring changes in brain activation suggest that the effects of rTMS may depend on both interhemispheric and intrahemispheric interactions between cortical loci controlling visual attention. Here, we investigated whether variability in the structural organization of human white matter pathways subserving visual attention, as assessed by diffusion magnetic resonance imaging and tractography, could explain interindividual differences in the effects of rTMS. Most participants showed a rightward shift in the allocation of spatial attention after rTMS over the right intraparietal sulcus (IPS), but the size of this effect varied largely across participants. Conversely, rTMS over the left IPS resulted in strikingly opposed individual responses, with some participants responding with rightward and some with leftward attentional shifts. We demonstrate that microstructural and macrostructural variability within the corpus callosum, consistent with differential effects on cross-hemispheric interactions, predicts both the extent and the direction of the response to rTMS. Together, our findings suggest that the corpus callosum may have a dual inhibitory and excitatory function in maintaining the interhemispheric dynamics that underlie the allocation of spatial attention. SIGNIFICANCE STATEMENT: The posterior parietal cortex (PPC) controls allocation of attention across left versus right visual fields. Damage to this area results in neglect, characterized by a lack of spatial awareness of the side of space contralateral to the brain injury. Transcranial magnetic stimulation over the PPC is used to study cognitive mechanisms of spatial attention and to examine the potential of this technique to treat neglect. However, large individual differences in behavioral responses to stimulation have been reported. We demonstrate that the variability in the structural organization of the corpus callosum accounts for these differences. Our findings suggest novel dual mechanism of the corpus callosum function in spatial attention and have broader implications for the use of stimulation in neglect rehabilitation.
Resumo:
PURPOSE: To correlate the dimension of the visual field (VF) tested by Goldman kinetic perimetry with the extent of visibility of the highly reflective layer between inner and outer segments of photoreceptors (IOS) seen in optical coherence tomography (OCT) images in patients with retinitis pigmentosa (RP). METHODS: In a retrospectively designed cross-sectional study, 18 eyes of 18 patients with RP were examined with OCT and Goldmann perimetry using test target I4e and compared with 18 eyes of 18 control subjects. A-scans of raw scan data of Stratus OCT images (Carl Zeiss Meditec, AG, Oberkochen, Germany) were quantitatively analyzed for the presence of the signal generated by the highly reflective layer between the IOS in OCT images. Starting in the fovea, the distance to which this signal was detectable was measured. Visual fields were analyzed by measuring the distance from the center point to isopter I4e. OCT and visual field data were analyzed in a clockwise fashion every 30 degrees , and corresponding measures were correlated. RESULTS: In corresponding alignments, the distance from the center point to isopter I4e and the distance to which the highly reflective signal from the IOS can be detected correlate significantly (r = 0.75, P < 0.0001). The greater the distance in VF, the greater the distance measured in OCT. CONCLUSIONS: The authors hypothesize that the retinal structure from which the highly reflective layer between the IOS emanates is of critical importance for visual and photoreceptor function. Further research is warranted to determine whether this may be useful as an objective marker of progression of retinal degeneration in patients with RP.
Resumo:
A word-length effect is often described in pure alexia, with reading time proportional to the number of letters in a word. Given the frequent association of right hemianopia with pure alexia, it is uncertain whether and how much of the word-length effect may be attributable to the hemifield loss. To isolate the contribution of the visual field defect, we simulated hemianopia in healthy subjects with a gaze-contingent paradigm during an eye-tracking experiment. We found a minimal word-length effect of 14 ms/letter for full-field viewing, which increased to 38 ms/letter in right hemianopia and to 31 ms/letter in left hemianopia. We found a correlation between mean reading time and the slope of the word-length effect in hemianopic conditions. The 95% upper prediction limits for the word-length effect were 51 ms/letter in subjects with full visual fields and 161 ms/letter with simulated right hemianopia. These limits, which can be considered diagnostic criteria for an alexic word-length effect, were consistent with the reading performance of six patients with diagnoses based independently on perimetric and imaging data: two patients with probable hemianopic dyslexia, and four with alexia and lesions of the left fusiform gyrus, two with and two without hemianopia. Two of these patients also showed reduction of the word-length effect over months, one with and one without a reading rehabilitation program. Our findings clarify the magnitude of the word-length effect that originates from hemianopia alone, and show that the criteria for a word-length effect indicative of alexia differ according to the degree of associated hemifield loss.
Resumo:
OBJECTIVE: The aim of this study was to compare the results of tendency-oriented perimetry (TOP) and a dynamic strategy in octopus perimetry as screening methods in clinical practice. DESIGN: A prospective single centre observational case series was performed. PARTICIPANTS AND METHODS: In a newly opened general ophthalmologic practice 89 consecutive patients (171 eyes) with a clinical indication for octopus static perimetry testing (ocular hypertension or suspicious optic nerve cupping) were examined prospectively with TOP and a dynamic strategy. The visual fields were graded by 3 masked observers as normal, borderline or abnormal without any further clinical information. RESULTS: 83% eyes showed the same result for both strategies. In 14% there was a small difference (with one visual field being abnormal or normal, the other being borderline). In only 2.9% of the eyes (5 cases) was there a contradictory result. In 4 out of 5 cases the dynamic visual field was abnormal and TOP was normal. 4 of these cases came back for a second examination. In all 4 the follow-up examination showed a normal second dynamic visual field. CONCLUSIONS: Octopus static perimetry using a TOP strategy is a fast, patient-friendly and very reliable screening tool for the general ophthalmological practice. We found no false-negative results in our series.
Resumo:
AIM: To compare the plasma levels of endothelin-1 (ET-1) between patients with primary open angle glaucoma with visual field progression despite normal or normalised intraocular pressure and patients with stabile visual fields in a retrospective study. METHODS: The progressive group consisted of 16 primary open angle glaucoma patients and the group with stable visual field consisted of 15 patients. After a 30 minute rest in a supine position, venous blood was obtained for ET-1 dosing. Difference in the plasma level of ET-1 between two groups was compared by means of analysis of covariance (ANCOVA), including age, sex, and mean arterial blood pressure as covariates. RESULTS: ET-1 plasma levels were found to be significantly increased in patients with deteriorating (3.47 (SD 0.75) pg/ml) glaucoma when compared to those with stable (2.59 (SD 0.54) pg/ml) visual fields (p = 0.0007). CONCLUSIONS: Glaucoma patients with visual field progression in spite of normal or normalised intraocular pressure have been found to have increased plasma endothelin-1 levels. It remains to be determined if this is a secondary phenomenon or whether it may have a role in the progression of glaucomatous damage.
Resumo:
BACKGROUND: Polycythemia vera (PV) is a hemopoetic disorder. Apparently, although thrombosis accounts for the majority of morbidity, AION has not been associated with PV so far. PATIENT AND FINDINGS: A 63 y-old woman with PV was hospitalized because of acute liver failure. She also experienced bilateral painless loss of vision. Bilateral, pale optic disc swelling with flame-like hemorrhages, more pronounced in the right eye, constricted visual fields, and relative afferent papillary defect (RAPD) on the right side were present. Computer tomography scan revealed no signs of intraorbital pathology, elevated intracranial pressure or hemorrhages. CLINICAL COURSE: We interpreted the findings as AION associated with the hyperviscosity syndrome. Liver transplantation had to be carried out in the next days. Three weeks later, vision improved slightly, but RAPD persisted, and disc pallor developed in both eyes. The patient died two months later. DISCUSSION: Central retinal artery and vein occlusions have been described as complications of Essential thrombocythemia, but not of PV. We observed a rare case of bilateral neuropathy suggestive of AION. This condition has so far not been associated with PV.
Resumo:
Simple clinical scores to predict large vessel occlusion (LVO) in acute ischemic stroke would be helpful to triage patients in the prehospital phase. We assessed the ability of various combinations of National Institutes of Health Stroke Scale (NIHSS) subitems and published stroke scales (i.e., RACE scale, 3I-SS, sNIHSS-8, sNIHSS-5, sNIHSS-1, mNIHSS, a-NIHSS items profiles A-E, CPSS1, CPSS2, and CPSSS) to predict LVO on CT or MR arteriography in 1085 consecutive patients (39.4 % women, mean age 67.7 years) with anterior circulation strokes within 6 h of symptom onset. 657 patients (61 %) had an occlusion of the internal carotid artery or the M1/M2 segment of the middle cerebral artery. Best cut-off value of the total NIHSS score to predict LVO was 7 (PPV 84.2 %, sensitivity 81.0 %, specificity 76.6 %, NPV 72.4 %, ACC 79.3 %). Receiver operating characteristic curves of various combinations of NIHSS subitems and published scores were equally or less predictive to show LVO than the total NIHSS score. At intersection of sensitivity and specificity curves in all scores, at least 1/5 of patients with LVO were missed. Best odds ratios for LVO among NIHSS subitems were best gaze (9.6, 95 %-CI 6.765-13.632), visual fields (7.0, 95 %-CI 3.981-12.370), motor arms (7.6, 95 %-CI 5.589-10.204), and aphasia/neglect (7.1, 95 %-CI 5.352-9.492). There is a significant correlation between clinical scores based on the NIHSS score and LVO on arteriography. However, if clinically relevant thresholds are applied to the scores, a sizable number of LVOs are missed. Therefore, clinical scores cannot replace vessel imaging.
Resumo:
OBJECTIVE: To test the prediction by the Perception and Attention Deficit (PAD) model of complex visual hallucinations that cognitive impairment, specifically in visual attention, is a key risk factor for complex hallucinations in eye disease. METHODS: Two studies of elderly patients with acquired eye disease investigated the relationship between complex visual hallucinations (CVH) and impairments in general cognition and verbal attention (Study 1) and between CVH, selective visual attention and visual object perception (Study 2). The North East Visual Hallucinations Inventory was used to classify CVH. RESULTS: In Study 1, there was no relationship between CVH (n=10/39) and performance on cognitive screening or verbal attention tasks. In Study 2, participants with CVH (n=11/31) showed poorer performance on a modified Stroop task (p<0.05), a novel imagery-based attentional task (p<0.05) and picture (p<0.05) but not silhouette naming (p=0.13) tasks. Performance on these tasks correctly classified 83% of the participants as hallucinators or non-hallucinators. CONCLUSIONS: The results suggest that, consistent with the PAD model, complex visual hallucinations in people with acquired eye disease are associated with visual attention impairment.
Resumo:
27-Channel EEG potential map series were recorded from 12 normals with closed and open eyes. Intracerebral dipole model source locations in the frequency domain were computed. Eye opening (visual input) caused centralization (convergence and elevation) of the source locations of the seven frequency bands, indicative of generalized activity; especially, there was clear anteriorization of α-2 (10.5–12 Hz) and β-2 (18.5–21 Hz) sources (α-2 also to the left). Complexity of the map series' trajectories in state space (assessed by Global Dimensional Complexity and Global OMEGA Complexity) increased significantly with eye opening, indicative of more independent, parallel, active processes. Contrary to PET and fMRI, these results suggest that brain activity is more distributed and independent during visual input than after eye closing (when it is more localized and more posterior).
Resumo:
OBJECTIVE This study aimed to test the prediction from the Perception and Attention Deficit model of complex visual hallucinations (CVH) that impairments in visual attention and perception are key risk factors for complex hallucinations in eye disease and dementia. METHODS Two studies ran concurrently to investigate the relationship between CVH and impairments in perception (picture naming using the Graded Naming Test) and attention (Stroop task plus a novel Imagery task). The studies were in two populations-older patients with dementia (n = 28) and older people with eye disease (n = 50) with a shared control group (n = 37). The same methodology was used in both studies, and the North East Visual Hallucinations Inventory was used to identify CVH. RESULTS A reliable relationship was found for older patients with dementia between impaired perceptual and attentional performance and CVH. A reliable relationship was not found in the population of people with eye disease. CONCLUSIONS The results add to previous research that object perception and attentional deficits are associated with CVH in dementia, but that risk factors for CVH in eye disease are inconsistent, suggesting that dynamic rather than static impairments in attentional processes may be key in this population.
Resumo:
Visual neglect is considerably exacerbated by increases in visual attentional load. These detrimental effects of attentional load are hypothesised to be dependent on an interplay between dysfunctional inter-hemispheric inhibitory dynamics and load-related modulation of activity in cortical areas such as the posterior parietal cortex (PPC). Continuous Theta Burst Stimulation (cTBS) over the contralesional PPC reduces neglect severity. It is unknown, however, whether such positive effects also operate in the presence of the detrimental effects of heightened attentional load. Here, we examined the effects of cTBS on neglect severity in overt visual search (i.e., with eye movements), as a function of high and low visual attentional load conditions. Performance was assessed on the basis of target detection rates and eye movements, in a computerised visual search task and in two paper-pencil tasks. cTBS significantly ameliorated target detection performance, independently of attentional load. These ameliorative effects were significantly larger in the high than the low load condition, thereby equating target detection across both conditions. Eye movement analyses revealed that the improvements were mediated by a redeployment of visual fixations to the contralesional visual field. These findings represent a substantive advance, because cTBS led to an unprecedented amelioration of overt search efficiency that was independent of visual attentional load.
Resumo:
The aim of the present study was to investigate whether healthy first-degree relatives of schizophrenia patients show reduced sensitivity performance, higher intra-individual variability (IIV) in reaction time (RT), and a steeper decline in sensitivity over time in a sustained attention task. Healthy first-degree relatives of schizophrenia patients (n=23) and healthy control subjects (n=46) without a family history of schizophrenia performed a demanding version of the Rapid Visual Information Processing task (RVIP). RTs, hits, false alarms, and the sensitivity index A' were assessed. The relatives were significantly less sensitive, tended to have higher IIV in RT, but sustained the impaired level of sensitivity over time. Impaired performance on the RVIP is a possible endophenotype for schizophrenia. Higher IIV in RT, apparently caused by impaired context representations, might result in fluctuations in control and lead to more frequent attentional lapses.
Resumo:
BACKGROUND: Although visuospatial deficits have been linked with freezing of gait (FOG) in Parkinson's disease (PD), the specific effects of dorsal and ventral visual pathway dysfunction on FOG is not well understood. METHOD: We assessed visuospatial function in FOG using an angle discrimination test (dorsal visual pathway bias) and overlapping figure test (ventral visual pathway bias), and recorded overall response time, mean fixation duration and dwell time. Covariate analysis was conducted controlling for disease duration, motor severity, contrast sensitivity and attention with Bonferroni adjustments for multiple comparisons. RESULTS: Twenty seven people with FOG, 27 people without FOG and 24 controls were assessed. Average fixation duration during angle discrimination distinguished freezing status: [F (1, 43) = 4.77 p < 0.05] (1-way ANCOVA). CONCLUSION: Results indicate a preferential dysfunction of dorsal occipito-parietal pathways in FOG, independent of disease severity, attentional deficit, and contrast sensitivity.