108 resultados para Atrophy

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

For geographic atrophy (GA) due to age-related macular degeneration (AMD) there is so far no approved treatment option. Usually, increased autofluorescence (AF) levels of different patterns adjacent to the atrophic area indicate lipofuscin-laden retinal pigment epithelium (RPE) cells at a high risk for apoptosis. Herein, SRT was used to selectively treat these cells to stimulate RPE proliferation, in order to reduce or ideally stop further growth of the atrophic area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Spinal Muscular Atrophy (SMA), the SMN1 gene is deleted or inactivated. Because of a splicing problem, the second copy gene, SMN2, generates insufficient amounts of functional SMN protein, leading to the death of spinal cord motoneurons. For a "severe" mouse SMA model (Smn -/-, hSMN2 +/+; with affected pups dying at 5-7 days), which most closely mimicks the genetic set-up in human SMA patients, we characterise SMA-related ultrastructural changes in neuromuscular junctions (NMJs) of two striated muscles with discrete functions. In the diaphragm, but not the soleus muscle of 4-days old SMA mice, mitochondria on both sides of the NMJs degenerate, and perisynaptic Schwann cells as well as endoneurial fibroblasts show striking changes in morphology. Importantly, NMJs of SMA mice in which a modified U7 snRNA corrects SMN2 splicing and delays or prevents SMA symptoms are normal. This ultrastructural study reveals novel features of NMJ alterations - in particular the involvement of perisynaptic Schwann cells - that may be relevant for human SMA pathogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of imaging technologies has contributed to the understanding of the genesis and pathophysiological mechanisms of geographic atrophy (GA) secondary to age-related macular degeneration (AMD). Fundus autofluorescence (FAF) imaging allows accurate discrimination of the boundaries of atrophic patches. Furthermore, predictive markers for disease progression can be identified. Non-invasive FAF imaging now represents the gold standard for evaluating progressive enlargement of atrophic areas. By means of high resolution optical coherence tomography (OCT) microstructural retinal changes in GA can be identified. Anatomical endpoints are now being used in interventional GA trials and represent meaningful outcome parameters as surrogate markers in an overall slowly progressive disease which may not affect the fovea until later stages of the disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blue-light fundus autofluorescence (FAF) imaging is currently widely used for assessing dry age-related macular degeneration (ARMD). However, at this wavelength, the fovea appears as circular zone of marked hypofluorescence, due to the absorption of macular pigment (MP). This dark spot could be misinterpreted as an atrophic area and could lead to difficulties in identifying small, central changes. The purpose of the study was to analyze differences in image quality, FAF patterns, and lesion size, when using conventional blue-light (Λ(1) = 488 nm) and green-light (Λ(2) = 514 nm) FAF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE. To evaluate the role of fellow eye status in determining progression of geographic atrophy (GA) in patients with age-related macular degeneration (AMD). METHODS. A total of 300 eyes with GA of 193 patients from the prospective, longitudinal, natural history FAM Study were classified into three groups according to the AMD manifestation in the fellow eye at baseline examination: (1) bilateral GA, (2) early/intermediate AMD, and (3) exudative AMD. GA areas were quantified based on fundus autofluorescence images using a semiautomated image-processing method, and progression rates (PR) were estimated using two-level, linear, mixed-effects models. RESULTS. Crude GA-PR in the bilateral GA group (mean, 1.64 mm(2)/y; 95% CI, 1.478-1.803) was significantly higher than in the fellow eye early/intermediate group (0.74 mm(2)/y, 0.146-1.342). Although there was a significant difference in baseline GA size (P = 0.0013, t-test), and there was a significant increase in GA-PR by 0.11 mm(2)/y (0.05-0.17) per 1 disc area (DA; 2.54 mm(2)), an additional mean change of -0.79 (-1.43 to -0.15) was given to the PR beside the effect of baseline GA size. However, this difference was only significant when GA size was ?1 DA at baseline with a GA-PR of 1.70 mm(2)/y (1.54-1.85) in the bilateral and 0.95 mm(2)/y (0.37-1.54) in the early/intermediate group. There was no significant difference in PR compared with that in the fellow eye exudative group. CONCLUSIONS. The results indicate that the AMD manifestation of the fellow eye at baseline serves as an indicator for disease progression in eyes with GA ? 1 DA. Predictive characteristics not only contribute to the understanding of pathophysiological mechanisms, but also are useful for the design of future interventional trials in GA patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiomyopathies are severe degenerative disorders of the myocardium that lead to heart failure. During the last three decades bovine dilated cardiomyopathy (BDCMP) was observed worldwide in cattle of Holstein-Friesian origin. In the Swiss cattle population BDCMP affects Fleckvieh and Red Holstein breeds. The heart of affected animals is enlarged due to dilation of both ventricles. Clinical signs are caused by systolic dysfunction and affected individuals die as a result of severe heart insufficiency. BDCMP follows an autosomal recessive pattern of inheritance and the disease-causing locus was mapped to bovine chromosome 18 (BTA18). In the present study we describe the successful identification of the causative mutation in the OPA3 gene located on BTA18 that was previously reported to cause 3-methylglutaconic aciduria type III in Iraqi-Jewish patients. We demonstrated conclusive genetic and functional evidence that the nonsense mutation c.343C>T in the bovine OPA3 gene causes the late-onset dilated cardiomyopathy in Red Holstein cattle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurodegenerative diseases affect the cerebellum of numerous dog breeds. Although subjective, magnetic resonance (MR) imaging has been used to detect cerebellar atrophy in these diseases, but there are few data available on the normal size range of the cerebellum relative to other brain regions. The purpose of this study was to determine whether the size of the cerebellum maintains a consistent ratio with other brain regions in different ages and breeds of normal dogs and to define a measurement that can be used to identify cerebellar atrophy on MR images. Images from 52 normal and 13 dogs with cerebellar degenerative diseases were obtained. Volume and mid-sagittal cross-sectional area of the forebrain, brainstem, and cerebellum were calculated for each normal dog and compared between different breeds and ages as absolute and relative values. The ratio of the cerebellum to total brain and of the brainstem to cerebellum mid-sagittal cross-sectional area was compared between normal and affected dogs and the sensitivity and specificity of these ratios at distinguishing normal from affected dogs was calculated. The percentage of the brain occupied by the cerebellum in diverse dog breeds between 1 and 5 years of age was not significantly different, and cerebellar size did not change with increasing age. Using a cut off of 89%, the ratio between the brainstem and cerebellum mid-sagittal cross-sectional area could be used successfully to differentiate affected from unaffected dogs with a sensitivity and specificity of 100%, making this ratio an effective tool for identifying cerebellar atrophy on MR images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To test the hypothesis that the extension of areas with increased fundus autofluorescence (FAF) outside atrophic patches correlates with the rate of spread of geographic atrophy (GA) over time in eyes with age-related macular degeneration (AMD). METHODS: The database of the multicenter longitudinal natural history Fundus Autofluorescence in AMD (FAM) Study was reviewed for patients with GA recruited through the end of August 2003, with follow-up examinations within at least 1 year. Only eyes with sufficient image quality and with diffuse patterns of increased FAF surrounding atrophy were chosen. In standardized digital FAF images (excitation, 488 nm; emission, >500 nm), total size and spread of GA was measured. The convex hull (CH) of increased FAF as the minimum polygon encompassing the entire area of increased FAF surrounding the central atrophic patches was quantified at baseline. Statistical analysis was performed with the Spearman's rank correlation coefficient (rho). RESULTS: Thirty-nine eyes of 32 patients were included (median age, 75.0 years; interquartile range [IQR], 67.8-78.9); median follow-up, 1.87 years; IQR, 1.43-3.37). At baseline, the median total size of atrophy was 7.04 mm2 (IQR, 4.20-9.88). The median size of the CH was 21.47 mm2 (IQR, 15.19-28.26). The median rate of GA progression was 1.72 mm2 per year (IQR, 1.10-2.83). The area of increased FAF around the atrophy (difference between the CH and the total GA size at baseline) showed a positive correlation with GA enlargement over time (rho=0.60; P=0.0002). CONCLUSIONS: FAF characteristics that are not identified by fundus photography or fluorescein angiography may serve as a prognostic determinant in advanced atrophic AMD. As the FAF signal originates from lipofuscin (LF) in postmitotic RPE cells and since increased FAF indicates excessive LF accumulation, these findings would underscore the pathophysiological role of RPE-LF in AMD pathogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hereditary spastic paraparesis (HSP) is a heterogeneous group of neurodegenerative disorders with progressive lower limb spasticity, categorized into pure (p-HSP) and complicated forms (c-HSP). The purpose of this study was to evaluate if brain volumes in HSP were altered compared with a control population. Brain volumes were determined in patients suffering from HSP, including both p-HSP (n = 21) and c-HSP type (n = 12), and 30 age-matched healthy controls, using brain parenchymal fractions (BPF) calculated from 3D MRI data in an observer-independent procedure. In addition, the tissue segments of grey and white matter were analysed separately. In HSP patients, BPF were significantly reduced compared with controls both for the whole patient group (P < 0.001) and for both subgroups, indicating considerable brain atrophy. In contrast to controls who showed a decline of brain volumes with age, this physiological phenomenon was less pronounced in HSP. Therefore, global brain parenchyma reduction, involving both grey and white matter, seems to be a feature in both subtypes of HSP. Atrophy was more pronounced in c-HSP, consistent with the more severe phenotype including extramotor involvement. Thus, global brain atrophy, detected by MRI-based brain volume quantification, is a biological marker in HSP subtypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 13 patients, the development of supraspinatus muscle atrophy and fatty infiltration after rotator cuff tendon repair was quantified prospectively via magnetic resonance imaging. Intraoperative electrical nerve stimulation at repair showed that the maximal supraspinatus tension (up to 200 N) strongly correlated with the anatomic cross-sectional muscle area and with muscle fatty infiltration (ranging from 12 N/cm(2) in Goutallier stage 3 to 42 N/cm(2) in Goutallier stage 0). Within 1 year after successful tendon repair (n = 8), fatty infiltration did not recover, and atrophy improved partially at best; however, if the repair failed (n = 5), atrophy and fatty infiltration progressed significantly. The ability of the rotator cuff muscles to develop tension not only correlates with their atrophy but also closely correlates with their degree of fatty infiltration. With current repair techniques, atrophy and fatty infiltration appear to be irreversible, despite successful tendon repair. Unexpectedly, not only weak but also very strong muscles are at risk for repair failure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spinal muscular atrophy (SMA) is a lethal hereditary disease caused by homozygous deletion/inactivation of the survival of motoneuron 1 (SMN1) gene. The nearby SMN2 gene, despite its identical coding capacity, is only an incomplete substitute, because a single nucleotide difference impairs the inclusion of its seventh exon in the messenger RNA (mRNA). This splicing defect can be corrected (transiently) by specially designed oligonucleotides. Here we have developed a more permanent correction strategy based on bifunctional U7 small nuclear RNAs (snRNAs). These carry both an antisense sequence that allows specific binding to exon 7 and a splicing enhancer sequence that will improve the recognition of the targeted exon. When expression cassettes for these RNAs are stably introduced into cells, the U7 snRNAs become incorporated into small nuclear ribonucleoprotein (snRNP) particles that will induce a durable splicing correction. We have optimized this strategy to the point that virtually all SMN2 pre-mRNA becomes correctly spliced. In fibroblasts from an SMA patient, this approach induces a prolonged restoration of SMN protein and ensures its correct localization to discrete nuclear foci (gems).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In spinal muscular atrophy, the SMN1 gene is deleted or destroyed by mutation, while the neigbouring, nearly identical SMN2 gene acts as a partial functional substitute. However, due to a single nucleotide exchange, the seventh exon of SMN2 is mostly excluded from the mature mRNA, and the resulting shorter protein is non-functional. Here, we map the previously uncharacterised intron 6 branch point by RT-PCR. Moreover we show that exon 7 inclusion can be either abolished or improved by mutations in this branch site region.