19 resultados para Atmospheric Conditions.
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The link between high precipitation in Dronning Maud Land (DML), Antarctica, and the large-scale atmospheric circulation is investigated using ERA-Interim data for 1979–2009. High-precipitation events are analyzed at Halvfarryggen situated in the coastal region of DML and at Kohnen Station located in its interior. This study further includes a comprehensive comparison of high precipitation in ERA-Interim with precipitation data from the Antarctic Mesoscale Prediction System (AMPS) and snow accumulation measurements from automatic weather stations (AWSs), with the limitations of such a comparison being discussed. The ERA-Interim and AMPS precipitation data agree very well. However, the correspondence between high precipitation in ERA-Interim and high snow accumulation at the AWSs is relatively weak. High-precipitation events at both Halvfarryggen and Kohnen are typically associated with amplified upper level waves. This large-scale atmospheric flow pattern is preceded by the downstream development of a Rossby wave train from the eastern South Pacific several days before the precipitation event. At the surface, a cyclone located over the Weddell Sea is the main synoptic ingredient for high precipitation both at Halvfarryggen and at Kohnen. A blocking anticyclone downstream is not a requirement for high precipitation per se, but a larger share of blocking occurrences during the highest-precipitation days in DML suggests that these blocks strengthen the vertically integrated water vapor transport (IVT) into DML. A strong link between high precipitation and the IVT perpendicular to the local orography suggests that IVT could be used as a “proxy” for high precipitation, in particular over DML's interior.
Resumo:
The abundance of atmospheric oxygen and its evolution through Earth's history is a highly debated topic. The earliest change of the Mo concentration and isotope composition of marine sediments are interpreted to be linked to the onset of the accumulation of free O2 in Earth's atmosphere. The O2 concentration needed to dissolve significant amounts of Mo in water is not yet quantified, however. We present laboratory experiments on pulverized and surface-cleaned molybdenite (MoS2) and a hydrothermal breccia enriched in Mo-bearing sulphides using a glove box setup. Duration of an experiment was 14 days, and first signs of oxidation and subsequent dissolution of Mo compounds start to occur above an atmospheric oxygen concentration of 72 ± 20 ppmv (i.e., 2.6 to 4.6 × 10−4 present atmospheric level (PAL)). This experimentally determined value coincides with published model calculations supporting atmospheric O2 concentrations between 1 × 10−5 to 3 × 10−4 PAL prior to the Great Oxidation Event and sets an upper limit to the molecular oxygen needed to trigger Mo accumulation and Mo isotope variations recorded in sediments. In combination with the published Mo isotope composition of the rock record, this result implies an atmospheric oxygen concentration prior to 2.76 Ga of below 72 ± 20 ppmv.
Resumo:
The triggering mechanism and the temporal evolution of large flood events, especially of worst-case scenarios, are not yet fully understood. Consequently, the cumulative losses of extreme floods are unknown. To study the link between weather conditions, discharges and flood losses it is necessary to couple atmospheric, hydrological, hydrodynamic and damage models. The objective of the M-AARE project is to test the potentials and opportunities of a model chain that relates atmospheric conditions to flood losses or risks. The M-AARE model chain is a set of coupled models consisting of four main components: the precipitation module, the hydrology module, the hydrodynamic module, and the damage module. The models are coupled in a cascading framework with harmonized time-steps. First exploratory applications show that the one way coupling of the WRF-PREVAH-BASEMENT models has been achieved and provides promising new insights for a better understanding of key aspects in flood risk analysis.
Resumo:
Diesel exhaust and wood burning are important sources of ambient atmospheric particles due to increasing numbers of diesel cars and the importance of wood as a source of renewable energy. Inhalation is the predominant route of entry and uptake for fine and ultrafine particles into the body. Health effects of atmospheric particles are still not completely understood. There is consistent evidence from epidemiology that particle exposure contributes to respiratory and cardiovascular diseases. This study aimed at examining acute responses of airway epithelial cells and luminal macrophages after exposure to freshly emitted and photochemically aged carbonaceous aerosols under realistic atmospheric conditions. In addition to a bronchial epithelial cell line advanced cell cultures namely fully differentiated respiratory epithelia and primary surface macrophages were used. Our results demonstrate that a single exposure of the cells to realistic particle doses of 0.3–3 ng diesel or 3–9 ng wood aerosol per cm2 cell surface induces small, particle-specific responses. The release of interleukin-6 and -8 was found to be decreased in differentiated airway epithelia but not in the other cell models studied. Aerosol exposure decreased macrophage phagocytic activity by 45–90%. Cell and tissue integrity remained unaffected. Overall, primary and aged particles from the same combustion induced similar responses in the cell models tested, whereby particles from diesel exhaust affected the cells more than those from wood combustion.
Resumo:
Deuterium (δD) and oxygen (δ18O) isotopes are powerful tracers of the hydrological cycle and have been extensively used for paleoclimate reconstructions as they can provide information on past precipitation, temperature and atmospheric circulation. More recently, the use of δ17O excess derived from precise measurement of δ17O and δ18O gives new and additional insights in tracing the hydrological cycle whereas uncertainties surround this proxy. However, 17O excess could provide additional information on the atmospheric conditions at the moisture source as well as about fractionations associated with transport and site processes. In this paper we trace water stable isotopes (δD,δ17O and δ18O) along their path from precipitation to cave drip water and finally to speleothem fluid inclusions for Milandre cave in northwestern Switzerland. A two year-long daily resolved precipitation isotope record close to the cave site is compared to collected cave drip water (3 months average resolution) and fluid inclusions of modern and Holocene stalagmites. Amount weighted mean δD,δ18O and δ17O are -71.0‰, -9.9‰, -5.2‰ for precipitation, -60.3‰, -8.7‰, -4.6‰ for cave drip water and -61.3‰, -8.3‰, -4.7‰ for recent fluid inclusions respectively. Second order parameters have also been derived in precipitation and drip water and present similar values with 18 per meg for 17O excess whereas d-excess is 1.5‰ more negative in drip water. Furthermore, the atmospheric signal is shifted towards enriched values in the drip water and fluid inclusions (Δ of ~ + 10‰ for δD). The isotopic composition of cave drip water exhibits a weak seasonal signal which is shifted by around 8 - 10 months (groundwater residence time) when compared to the precipitation. Moreover, we carried out the first δ17O measurement in speleothem fluid inclusions, as well as the first comparison of the δ17 O behaviour from the meteoric water to the fluid inclusions entrapment in speleothems. This study on precipitation, drip water and fluid inclusions will be used as a speleothem proxy calibration for Milandre cave in order to reconstruct paleotemperatures and moisture source variations for Western Central Europe.
Resumo:
We present observations of total cloud cover and cloud type classification results from a sky camera network comprising four stations in Switzerland. In a comprehensive intercomparison study, records of total cloud cover from the sky camera, long-wave radiation observations, Meteosat, ceilometer, and visual observations were compared. Total cloud cover from the sky camera was in 65–85% of cases within ±1 okta with respect to the other methods. The sky camera overestimates cloudiness with respect to the other automatic techniques on average by up to 1.1 ± 2.8 oktas but underestimates it by 0.8 ± 1.9 oktas compared to the human observer. However, the bias depends on the cloudiness and therefore needs to be considered when records from various observational techniques are being homogenized. Cloud type classification was conducted using the k-Nearest Neighbor classifier in combination with a set of color and textural features. In addition, a radiative feature was introduced which improved the discrimination by up to 10%. The performance of the algorithm mainly depends on the atmospheric conditions, site-specific characteristics, the randomness of the selected images, and possible visual misclassifications: The mean success rate was 80–90% when the image only contained a single cloud class but dropped to 50–70% if the test images were completely randomly selected and multiple cloud classes occurred in the images.
Resumo:
We present a new radiation scheme for the Oxford Planetary Unified Model System for Venus, suitable for the solar and thermal bands. This new and fast radiative parameterization uses a different approach in the two main radiative wavelength bands: solar radiation (0.1-5.5 mu m) and thermal radiation (1.7-260 mu m). The solar radiation calculation is based on the delta-Eddington approximation (two-stream-type) with an adding layer method. For the thermal radiation case, a code based on an absorptivity/emissivity formulation is used. The new radiative transfer formulation implemented is intended to be computationally light, to allow its incorporation in 3D global circulation models, but still allowing for the calculation of the effect of atmospheric conditions on radiative fluxes. This will allow us to investigate the dynamical-radiative-microphysical feedbacks. The model flexibility can be also used to explore the uncertainties in the Venus atmosphere such as the optical properties in the deep atmosphere or cloud amount. The results of radiative cooling and heating rates and the global-mean radiative-convective equilibrium temperature profiles for different atmospheric conditions are presented and discussed. This new scheme works in an atmospheric column and can be easily implemented in 3D Venus global circulation models. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Using a highly resolved atmospheric general circulation model, the impact of different glacial boundary conditions on precipitation and atmospheric dynamics in the North Atlantic region is investigated. Six 30-yr time slice experiments of the Last Glacial Maximum at 21 thousand years before the present (ka BP) and of a less pronounced glacial state – the Middle Weichselian (65 ka BP) – are compared to analyse the sensitivity to changes in the ice sheet distribution, in the radiative forcing and in the prescribed time-varying sea surface temperature and sea ice, which are taken from a lower-resolved, but fully coupled atmosphere-ocean general circulation model. The strongest differences are found for simulations with different heights of the Laurentide ice sheet. A high surface elevation of the Laurentide ice sheet leads to a southward displacement of the jet stream and the storm track in the North Atlantic region. These changes in the atmospheric dynamics generate a band of increased precipitation in the mid-latitudes across the Atlantic to southern Europe in winter, while the precipitation pattern in summer is only marginally affected. The impact of the radiative forcing differences between the two glacial periods and of the prescribed time-varying sea surface temperatures and sea ice are of second order importance compared to the one of the Laurentide ice sheet. They affect the atmospheric dynamics and precipitation in a similar but less pronounced manner compared with the topographic changes.
Resumo:
We report on the wind radiometer WIRA, a new ground-based microwave Doppler-spectro-radiometer specifically designed for the measurement of middle-atmospheric horizontal wind by observing ozone emission spectra at 142.17504 GHz. Currently, wind speeds in five levels between 30 and 79 km can be retrieved which makes WIRA the first instrument able to continuously measure horizontal wind in this altitude range. For an integration time of one day the measurement error on each level lies at around 25 m s−1. With a planned upgrade this value is expected to be reduced by a factor of 2 in the near future. On the altitude levels where our measurement can be compared to wind data from the European Centre for Medium-Range Weather Forecasts (ECMWF) very good agreement in the long-term statistics as well as in short time structures with a duration of a few days has been found. WIRA uses a passive double sideband heterodyne receiver together with a digital Fourier transform spectrometer for the data acquisition. A big advantage of the radiometric approach is that such instruments can also operate under adverse weather conditions and thus provide a continuous time series for the given location. The optics enables the instrument to scan a wide range of azimuth angles including the directions east, west, north, and south for zonal and meridional wind measurements. The design of the radiometer is fairly compact and its calibration does not rely on liquid nitrogen which makes it transportable and suitable for campaign use. WIRA is conceived in a way that it can be operated remotely and does hardly require any maintenance. In the present paper, a description of the instrument is given, and the techniques used for the wind retrieval based on the determination of the Doppler shift of the measured atmospheric ozone emission spectra are outlined. Their reliability was tested using Monte Carlo simulations. Finally, a time series of 11 months of zonal wind measurements over Bern (46°57′ N, 7°26′ E) is presented and compared to ECMWF wind data.
Resumo:
[1] Winter circulation types under preindustrial and glacial conditions are investigated and used to quantify their impact on precipitation. The analysis is based on daily mean sea level pressure fields of a highly resolved atmospheric general circulation model and focuses on the North Atlantic and European region. We find that glacial circulation types are dominated by patterns with an east-west pressure gradient, which clearly differs from the predominantly zonal patterns for the recent past. This is also evident in the frequency of occurrence of circulation types when projecting preindustrial circulation types onto the glacial simulations. The elevation of the Laurentide ice sheet is identified as a major cause for these differences. In areas of strong precipitation signals in glacial times, the changes in the frequencies of occurrence of the circulation types explain up to 60% of the total difference between preindustrial and glacial simulations.
Resumo:
The frequency of large-scale heavy precipitation events in the European Alps is expected to undergo substantial changes with current climate change. Hence, knowledge about the past natural variability of floods caused by heavy precipitation constitutes important input for climate projections. We present a comprehensive Holocene (10,000 years) reconstruction of the flood frequency in the Central European Alps combining 15 lacustrine sediment records. These records provide an extensive catalog of flood deposits, which were generated by flood-induced underflows delivering terrestrial material to the lake floors. The multi-archive approach allows suppressing local weather patterns, such as thunderstorms, from the obtained climate signal. We reconstructed mainly late spring to fall events since ice cover and precipitation in form of snow in winter at high-altitude study sites do inhibit the generation of flood layers. We found that flood frequency was higher during cool periods, coinciding with lows in solar activity. In addition, flood occurrence shows periodicities that are also observed in reconstructions of solar activity from C-14 and Be-10 records (2500-3000, 900-1200, as well as of about 710, 500, 350, 208 (Suess cycle), 150, 104 and 87 (Gleissberg cycle) years). As atmospheric mechanism, we propose an expansion/shrinking of the Hadley cell with increasing/decreasing air temperature, causing dry/wet conditions in Central Europe during phases of high/low solar activity. Furthermore, differences between the flood patterns from the Northern Alps and the Southern Alps indicate changes in North Atlantic circulation. Enhanced flood occurrence in the South compared to the North suggests a pronounced southward position of the Westerlies and/or blocking over the northern North Atlantic, hence resembling a negative NAO state (most distinct from 4.2 to 2.4 kyr BP and during the Little Ice Age). South-Alpine flood activity therefore provides a qualitative record of variations in a paleo-NAO pattern during the Holocene. Additionally, increased South Alpine flood activity contrasts to low precipitation in tropical Central America (Cariaco Basin) on the Holocene and centennial time scale. This observation is consistent with a Holocene southward migration of the Atlantic circulation system, and hence of the ITCZ, driven by decreasing summer insolation in the Northern hemisphere, as well as with shorter-term fluctuations probably driven by solar activity. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Tropical explosive volcanism is one of the most important natural factors that significantly impact the climate system and the carbon cycle on annual to multi-decadal time scales. The three largest explosive eruptions in the last 50�years�Agung, El Chichón, and Pinatubo�occurred in spring/summer in conjunction with El Niño events and left distinct negative signals in the observational temperature and CO2 records. However, confounding factors such as seasonal variability and El Niño-Southern Oscillation (ENSO) may obscure the forcing-response relationship. We determine for the first time the extent to which initial conditions, i.e., season and phase of the ENSO, and internal variability influence the coupled climate and carbon cycle response to volcanic forcing and how this affects estimates of the terrestrial and oceanic carbon sinks. Ensemble simulations with the Earth System Model (Climate System Model 1.4-carbon) predict that the atmospheric CO2 response is �60 larger when a volcanic eruption occurs during El Niño and in winter than during La Niña conditions. Our simulations suggest that the Pinatubo eruption contributed 11�±�6 to the 25�Pg terrestrial carbon sink inferred over the decade 1990�1999 and �2�±�1 to the 22�Pg oceanic carbon sink. In contrast to recent claims, trends in the airborne fraction of anthropogenic carbon cannot be detected when accounting for the decadal-scale influence of explosive volcanism and related uncertainties. Our results highlight the importance of considering the role of natural variability in the carbon cycle for interpretation of observations and for data-model intercomparison.
Resumo:
Changes in Greenland accumulation and the stability in the relationship between accumulation variability and large-scale circulation are assessed by performing time-slice simulations for the present day, the preindustrial era, the early Holocene, and the Last Glacial Maximum (LGM) with a comprehensive climate model. The stability issue is an important prerequisite for reconstructions of Northern Hemisphere atmospheric circulation variability based on accumulation or precipitation proxy records from Greenland ice cores. The analysis reveals that the relationship between accumulation variability and large-scale circulation undergoes a significant seasonal cycle. As the contributions of the individual seasons to the annual signal change, annual mean accumulation variability is not necessarily related to the same atmospheric circulation patterns during the different climate states. Interestingly, within a season, local Greenland accumulation variability is indeed linked to a consistent circulation pattern, which is observed for all studied climate periods, even for the LGM. Hence, it would be possible to deduce a reliable reconstruction of seasonal atmospheric variability (e.g., for North Atlantic winters) if an accumulation or precipitation proxy were available that resolves single seasons. We further show that the simulated impacts of orbital forcing and changes in the ice sheet topography on Greenland accumulation exhibit strong spatial differences, emphasizing that accumulation records from different ice core sites regarding both interannual and long-term (centennial to millennial) variability cannot be expected to look alike since they include a distinct local signature. The only uniform signal to external forcing is the strong decrease in Greenland accumulation during glacial (LGM) conditions and an increase associated with the recent rise in greenhouse gas concentrations.