8 resultados para Assessment. Usability. Ergonomic Criteria. Academic Control System. Sensu Stricto
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Although assessment of asthma control is important to guide treatment, it is difficult since the temporal pattern and risk of exacerbations are often unpredictable. In this Review, we summarise the classic methods to assess control with unidimensional and multidimensional approaches. Next, we show how ideas from the science of complexity can explain the seemingly unpredictable nature of bronchial asthma and emphysema, with implications for chronic obstructive pulmonary disease. We show that fluctuation analysis, a method used in statistical physics, can be used to gain insight into asthma as a dynamic disease of the respiratory system, viewed as a set of interacting subsystems (eg, inflammatory, immunological, and mechanical). The basis of the fluctuation analysis methods is the quantification of the long-term temporal history of lung function parameters. We summarise how this analysis can be used to assess the risk of future asthma episodes, with implications for asthma severity and control both in children and adults.
Resumo:
We measured tungsten (W) isotopes in 23 iron meteorites and the metal phase of the CB chondrite Gujba in order to ascertain if there is evidence for a large-scale nucleosynthetic heterogeneity in the p-process isotope 180W in the solar nebula as recently suggested by Schulz et al. (2013). We observed large excesses in 180W (up to ≈ 6 ε) in some irons. However, significant within-group variations in magmatic IIAB and IVB irons are not consistent with a nucleosynthetic origin, and the collateral effects on 180W from an s-deficit in IVB irons cannot explain the total variation. We present a new model for the combined effects of spallation and neutron capture reactions on 180W in iron meteorites and show that at least some of the observed within-group variability is explained by cosmic ray effects. Neutron capture causes burnout of 180W, whereas spallation reactions lead to positive shifts in 180W. These effects depend on the target composition and cosmic-ray exposure duration; spallation effects increase with Re/W and Os/W ratios in the target and with exposure age. The correlation of 180W/184W with Os/W ratios in iron meteorites results in part from spallogenic production of 180W rather than from 184Os decay, contrary to a recent study by Peters et al. (2014). Residual ε180W excesses after correction for an s-deficit and for cosmic ray effects may be due to ingrowth of 180W from 184Os decay, but the magnitude of this ingrowth is at least a factor of ≈2 smaller than previously suggested. These much smaller effects strongly limit the applicability of the putative 184Os-180W system to investigate geological problems.
Resumo:
Purpose The accuracy, efficiency, and efficacy of four commonly recommended medication safety assessment methodologies were systematically reviewed. Methods Medical literature databases were systematically searched for any comparative study conducted between January 2000 and October 2009 in which at least two of the four methodologies—incident report review, direct observation, chart review, and trigger tool—were compared with one another. Any study that compared two or more methodologies for quantitative accuracy (adequacy of the assessment of medication errors and adverse drug events) efficiency (effort and cost), and efficacy and that provided numerical data was included in the analysis. Results Twenty-eight studies were included in this review. Of these, 22 compared two of the methodologies, and 6 compared three methods. Direct observation identified the greatest number of reports of drug-related problems (DRPs), while incident report review identified the fewest. However, incident report review generally showed a higher specificity compared to the other methods and most effectively captured severe DRPs. In contrast, the sensitivity of incident report review was lower when compared with trigger tool. While trigger tool was the least labor-intensive of the four methodologies, incident report review appeared to be the least expensive, but only when linked with concomitant automated reporting systems and targeted follow-up. Conclusion All four medication safety assessment techniques—incident report review, chart review, direct observation, and trigger tool—have different strengths and weaknesses. Overlap between different methods in identifying DRPs is minimal. While trigger tool appeared to be the most effective and labor-efficient method, incident report review best identified high-severity DRPs.
Resumo:
This paper presents the capabilities of a Space-Based Space Surveillance (SBSS) demonstration mission for Space Surveillance and Tracking (SST) based on a micro- satellite platform. The results have been produced in the frame of ESA’s "As sessment Study for Space Based Space Surveillance Demonstration Mission (Phase A) " performed by the Airbus DS consortium. Space Surveillance and Tracking is part of Space Situational Awareness (SSA) and covers the detection, tracking and cataloguing of spa ce debris and satellites. Derived SST services comprise a catalogue of these man-made objects, collision warning, detection and characterisation of in-orbit fragmentations, sub-catalogue debris characterisation, etc. The assessment of SBSS in an SST system architecture has shown that both an operational SBSS and also already a well - designed space-based demonstrator can provide substantial performance in terms of surveillance and tracking of beyond - LEO objects. Especially the early deployment of a demonstrator, possible by using standard equipment, could boost initial operating capability and create a self-maintained object catalogue. Unlike classical technology demonstration missions, the primary goal is the demonstration and optimisation of the functional elements in a complex end-to-end chain (mission planning, observation strategies, data acquisition, processing and fusion, etc.) until the final products can be offered to the users. The presented SBSS system concept takes the ESA SST System Requirements (derived within the ESA SSA Preparatory Program) into account and aims at fulfilling some of the SST core requirements in a stand-alone manner. The evaluation of the concept has shown that an according solution can be implemented with low technological effort and risk. The paper presents details of the system concept, candidate micro - satellite platforms, the observation strategy and the results of performance simulations for GEO coverage and cataloguing accuracy
Resumo:
This paper presents the capabilities of a Space-Based Space Surveillance (SBSS) demonstration mission for Space Surveillance and Tracking (SST) based on a micro-satellite platform. The results have been produced in the frame of ESA’s "Assessment Study for Space Based Space Surveillance Demonstration Mission" performed by the Airbus Defence and Space consortium. The assessment of SBSS in an SST system architecture has shown that both an operational SBSS and also already a well- designed space-based demonstrator can provide substantial performance in terms of surveillance and tracking of beyond-LEO objects. Especially the early deployment of a demonstrator, possible by using standard equipment, could boost initial operating capability and create a self-maintained object catalogue. Furthermore, unique statistical information about small-size LEO debris (mm size) can be collected in-situ. Unlike classical technology demonstration missions, the primary goal is the demonstration and optimisation of the functional elements in a complex end-to-end chain (mission planning, observation strategies, data acquisition, processing, etc.) until the final products can be offered to the users and with low technological effort and risk. The SBSS system concept takes the ESA SST System Requirements into account and aims at fulfilling SST core requirements in a stand-alone manner. Additionally, requirements for detection and characterisation of small-sizedLEO debris are considered. The paper presents details of the system concept, candidate micro-satellite platforms, the instrument design and the operational modes. Note that the detailed results of performance simulations for space debris coverage and cataloguing accuracy are presented in a separate paper “Capability of a Space-based Space Surveillance System to Detect and Track Objects in GEO, MEO and LEO Orbits” by J. Silha (AIUB) et al., IAC-14, A6, 1.1x25640.
Resumo:
Space debris in geostationary orbits may be detected with optical telescopes when the objects are illuminated by the Sun. The advantage compared to Radar can be found in the illumination: radar illuminates the objects and thus the detection sensitivity depletest proportional to the fourth power of the d istance. The German Space Operation Center, GSOC, together with the Astronomical Institute of the University of Bern, AIUB, are setting up a telescope system called SMARTnet to demonstrate the capability of performing geostationary surveillance. Such a telescope system will consist of two telescopes on one mount: a smaller telescope with an aperture of 20cm will serve for fast survey while the larger one, a telescope with an aperture of 50cm, will be used for follow-up observations. The telescopes will be operated by GSOC from Oberpfaffenhofen by the internal monitoring and control system called SMARTnetMAC. The observation plan will be generated by MARTnetPlanning seven days in advance by applying an optimized planning scheduler, taking into account fault time like cloudy nights, priority of objects etc. From each picture taken, stars will be identified and everything not being a star is treated as a possible object. If the same object can be identified on multiple pictures within a short time span, the trace is called a tracklet. In the next step, several tracklets will be correlated to identify individual objects, ephemeris data for these objects are generated and catalogued . This will allow for services like collision avoidance to ensure safe operations for GSOC’s satellites. The complete data processing chain is handled by BACARDI, the backbone catalogue of relational debris information and is presented as a poster.