4 resultados para Asphericity
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Early radiographic detection of femoroacetabular impingement might prevent initiation and progression of osteoarthritis. The structural abnormality in femoral-induced femoroacetabular impingement (cam type) is frequently asphericity at the anterosuperior head/neck contour. To determine which of six radiographic projections (anteroposterior, Dunn, Dunn/45 degrees flexion, cross-table/15 degrees internal rotation, cross-table/neutral rotation, and cross-table/15 degrees external rotation) best identifies femoral head/neck asphericity, we studied 21 desiccated femurs; 11 with an aspherical femoral head/neck contour and 10 with a spherical femoral head/neck contour. To radiographically quantify femoral head asphericity, we measured the angle where the femoral head/neck leaves sphericity (angle alpha). The aspherical femoral head/neck contours had a greater maximum angle alpha (70 degrees ) compared with the spherical head/neck contours (50 degrees ). The angle alpha varied depending on the radiographic projection: it was greatest in the Dunn view with 45 degrees hip flexion (71 degrees +/- 10 degrees ) and least in the cross-table view in 15 degrees external rotation (51 degrees +/- 7 degrees ). Diagnosis of a pathologic femoral head/neck contour depends on the radiologic projection. The Dunn view in 45 degrees or 90 degrees flexion or a cross-table projection in internal rotation best show femoral head/neck asphericity, whereas anteroposterior or externally rotated cross-table views are likely to miss asphericity. Level of Evidence: Prognostic study, level II-1 (retrospective study).
Resumo:
Asphericity of the femoral head-neck junction is one cause for femoroacetabular impingement of the hip. However, the asphericity often is underestimated on conventional radiographs. This study compares the presence of asphericity on conventional radiographs with its appearance on radial slices of magnetic resonance arthrography (MRA). We retrospectively reviewed 58 selected hips in 148 patients who underwent a surgical dislocation of the hip. To assess the circumference of the proximal femur, alpha angle and height of asphericity were measured in 14 positions using radial slices of MRA. The hips were assigned to one of four groups depending on the appearance of the head-neck junction on anteroposterior pelvic and lateral crosstable radiographs. Group I (n = 19) was circular on both planes, Group II (n = 19) was aspheric on the crosstable view, Group III (n = 4) was aspheric on the anteroposterior view, and Group IV (n = 13) was aspheric on both views. In all four groups, the highest alpha angle was found in the anterosuperior area of the head-neck junction. Even when conventional radiographs appeared normal, an increased alpha angle was present anterosuperiorly. Without the use of radial slices in MRA, the asphericity would be underestimated in these patients.
Resumo:
To assess rotation deficits, asphericity of the femoral head and localisation of cartilage damage in the follow-up after slipped capital femoral epiphysis (SCFE).
Resumo:
BACKGROUND Severe femoral head deformities in the frontal plane such as hips with Legg-Calvé-Perthes disease (LCPD) are not contained by the acetabulum and result in hinged abduction and impingement. These rare deformities cannot be addressed by resection, which would endanger head vascularity. Femoral head reduction osteotomy allows for reshaping of the femoral head with the goal of improving head sphericity, containment, and hip function. QUESTIONS/PURPOSES Among hips with severe asphericity of the femoral head, does femoral head reduction osteotomy result in (1) improved head sphericity and containment; (2) pain relief and improved hip function; and (3) subsequent reoperations or complications? METHODS Over a 10-year period, we performed femoral head reduction osteotomies in 11 patients (11 hips) with severe head asphericities resulting from LCPD (10 hips) or disturbance of epiphyseal perfusion after conservative treatment of developmental dysplasia (one hip). Five of 11 hips had concomitant acetabular containment surgery including two triple osteotomies, two periacetabular osteotomies (PAOs), and one Colonna procedure. Patients were reviewed at a mean of 5 years (range, 1-10 years), and none was lost to followup. Mean patient age at the time of head reduction osteotomy was 13 years (range, 7-23 years). We obtained the sphericity index (defined as the ratio of the minor to the major axis of the ellipse drawn to best fit the femoral head articular surface on conventional anteroposterior pelvic radiographs) to assess head sphericity. Containment was assessed evaluating the proportion of patients with an intact Shenton's line, the extrusion index, and the lateral center-edge (LCE) angle. Merle d'Aubigné-Postel score and range of motion (flexion, internal/external rotation in 90° of flexion) were assessed to measure pain and function. Complications and reoperations were identified by chart review. RESULTS At latest followup, femoral head sphericity (72%; range, 64%-81% preoperatively versus 85%; range, 73%-96% postoperatively; p = 0.004), extrusion index (47%; range, 25%-60% versus 20%; range, 3%-58%; p = 0.006), and LCE angle (1°; range, -10° to 16° versus 26°; range, 4°-40°; p = 0.0064) were improved compared with preoperatively. With the limited number of hips available, the proportion of an intact Shenton's line (64% versus 100%; p = 0.087) and the overall Merle d'Aubigné-Postel score (14.5; range, 12-16 versus 15.7; range, 12-18; p = 0.072) remained unchanged at latest followup. The Merle d'Aubigné-Postel pain subscore improved (3.5; range, 1-5 versus 5.0; range, 3-6; p = 0.026). Range of motion was not observed to have improved with the numbers available (p ranging from 0.513 to 0.778). In addition to hardware removal in two hips, subsequent surgery was performed in five of 11 hips to improve containment after a mean interval of 2.3 years (range, 0.2-7.5 years). Of those, two hips had triple osteotomy, one hip a combined triple and valgus intertrochanteric osteotomy, one hip an intertrochanteric varus osteotomy, and one hip a PAO with a separate valgus intertrochanteric osteotomy. No avascular necrosis of the femoral head occurred. CONCLUSIONS Femoral head reduction osteotomy can improve femoral head sphericity. Improved head containment in these hips with an often dysplastic acetabulum requires additional acetabular containment surgery, ideally performed concomitantly. This can result in reduced pain and avascular necrosis seems to be rare. With the number of patients available, function did not improve. Therefore, future studies should use more precise instruments to evaluate clinical outcome and include longer followup to confirm joint preservation. LEVEL OF EVIDENCE Level IV, therapeutic study.