4 resultados para Asian model
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
A polyphyletic understanding of Asian linguistic diversity was first propagated in 1823. Since 1901, various scholars have proposed larger linguistic phyla uniting two or more recognised Asian language families. The most recent proposal in this tradition, Starosta’s 2001 East Asian phylum, comprising the Trans-Himalayan, Hmong-Mien, Austroasiatic, Austronesian and Kradai language families, is reassessed in light of linguistic and non-linguistic evidence. Ethnolinguistically informed inferences based on Asian Y chromosomal phylogeography lead to a reconstruction of various episodes of ethnolinguistic prehistory which lie beyond the linguistic event horizon, i.e. at a time depth empirically inaccessible to historical linguistics. The Father Tongue correlation in population genetics, the evidence for refugia during the Last Glacial Maximum and the hypothesis of language families having arisen as the result of demographic bottlenecks in prehistory are shown to be crucial to an understanding of the ethnogenesis of East Asian linguistic phyla. The prehistory of several neighbouring Asian language families is discussed, and the Centripetal Migration model is opposed to the Farming Language Dispersal theory.
Resumo:
Linguistic palaeontology permits the identification of two language families whose linguistic ancestors pose the likeliest candidates for the original domesticators of rice, viz. Hmong-Mien and Austroasiatic. In the 2009 model, the ancient Hmong-Mien was identified as the primary domesticators of Asian rice, and the ancient Austroasiatics as the secondary domesticators. Recent rice genetic research leads to the modification of this model for rice domestication, but falls short of identifying the original locus of rice domestication. At the same time, the precise whereabouts of the Austroasiatic homeland remains disputed. Linguistic evidence unrelated to rice agriculture has been adduced to support a southern homeland for Austroasiatic somewhere within the Bay of Bengal littoral. The implications of new rice genetic research are discussed, the linguistic palaeontological evidence is reassessed, and an enduring problem with the archaeology of rice agriculture is highlighted.
Resumo:
Semi-arid ecosystems play an important role in regulating global climate with the fate of these ecosystems in the Anthropocene depending upon interactions among temperature, precipitation, and CO2. However, in cool-arid environments, precipitation is not the only limitation to forest productivity. Interactions between changes in precipitation and air temperature may enhance soil moisture stress while simultaneously extending growing season length, with unclear consequences for net carbon uptake. This study evaluates recent trends in productivity and phenology of Inner Asian forests (in Mongolia and Northern China) using satellite remote sensing, dendrochronology, and dynamic global vegetation model (DGVM) simulations to quantify the sensitivity of forest dynamics to decadal climate variability and trends. Trends in photosynthetically active radiation fraction (FPAR) between 1982 and 2010 show a greening of about 7% of the region in spring (March, April, May), and 3% of the area ‘browning’ during summertime (June, July, August). These satellite observations of FPAR are corroborated by trends in NPP simulated by the LPJ DGVM. Spring greening trends in FPAR are mainly explained by long-term trends in precipitation whereas summer browning trends are correlated with decreasing precipitation. Tree ring data from 25 sites confirm annual growth increments are mainly limited by summer precipitation (June, July, August) in Mongolia, and spring precipitation in northern China (March, April, May), with relatively weak prior-year lag effects. An ensemble of climate projections from the IPCC CMIP3 models indicates that warming temperatures (spring, summer) are expected to be associated with higher summer precipitation, which combined with CO2 causes large increases in NPP and possibly even greater forest cover in the Mongolian steppe. In the absence of a strong direct CO2 fertilization effect on plant growth (e.g., due to nutrient limitation), water stress or decreased carbon gain from higher autotrophic respiration results in decreased productivity and loss of forest cover. The fate of these semi-arid ecosystems thus appears to hinge upon the magnitude and subtleties of CO2 fertilization effects, for which experimental observations in arid systems are needed to test and refine vegetation models.
Resumo:
OBJECTIVE Type A aortic dissection is a life-threatening disease requiring immediate surgical treatment. With emerging catheter-based technologies, endovascular stent-graft implantation to treat aneurysms and dissections has become a standardized procedure. However, endovascular treatment of the ascending aorta remains challenging. Thus we designed an ascending aortic dissection model to allow simulation of endovascular treatment. METHODS Five formalin-fixed human aortas were prepared. The ascending aorta was opened semicircularly in the middle portion and the medial layer was separated from the intima. The intimal tube was readapted using running monofilament sutures. The preparations were assessed by 128-slice computed tomography. A bare-metal stent was implanted for thoracic endovascular aortic repair in 4 of the aortic dissection models. RESULTS Separation of the intimal and medial layer of the aorta was considered to be sufficient because computed tomography showed a clear image of the dissection membrane in each aorta. The dissection was located 3.9 ± 1.4 cm proximally from the aortic annulus, with a length of 4.6 ± 0.9 cm. Before stent implantation, the mean distance from the intimal flap to the aortic wall was measured as 0.63 ± 0.163 cm in the ascending aorta. After stent implantation, this distance decreased to 0.26 ± 0.12 cm. CONCLUSION This model of aortic dissection of the ascending human aorta was reproducible with a comparable pathological and morphological appearance. The technique and model can be used to evaluate new stent-graft technologies to treat type A dissection and facilitate training for surgeons.