6 resultados para Artificial heart

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The European Registry for Patients with Mechanical Circulatory Support (EUROMACS) was founded on 10 December 2009 with the initiative of Roland Hetzer (Deutsches Herzzentrum Berlin, Berlin, Germany) and Jan Gummert (Herz- und Diabeteszentrum Nordrhein-Westfalen, Bad Oeynhausen, Germany) with 15 other founding international members. It aims to promote scientific research to improve care of end-stage heart failure patients with ventricular assist device or a total artificial heart as long-term mechanical circulatory support. Likewise, the organization aims to provide and maintain a registry of device implantation data and long-term follow-up of patients with mechanical circulatory support. Hence, EUROMACS affiliated itself with Dendrite Clinical Systems Ltd to offer its members a software tool that allows input and analysis of patient clinical data on a daily basis. EUROMACS facilitates further scientific studies by offering research groups access to any available data wherein patients and centres are anonymized. Furthermore, EUROMACS aims to stimulate cooperation with clinical and research institutions and with peer associations involved to further its aims. EUROMACS is the only European-based Registry for Patients with Mechanical Circulatory Support with rapid increase in institutional and individual membership. Because of the expeditious data input, the European Association for Cardiothoracic Surgeons saw the need to optimize the data availability and the significance of the registry to improve care of patients with mechanical circulatory support and its potential contribution to scientific intents; hence, the beginning of their alliance in 2012. This first annual report is designed to provide an overview of EUROMACS' structure, its activities, a first data collection and an insight to its scientific contributions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Extracorporeal membrane oxygenation (ECMO) was used to achieve temporary artificial support in cardiac and pulmonary function in 22 patients from 1987 to September 1990. Standard indications were postcardiotomy cardiogenic shock (n = 4), neonatal (n = 1) and adult respiratory distress syndrome (n = 4). ECMO was also used for extended indications, such as graft failure following heart (n = 11) or lung transplantation (n = 2). In six of these cases ECMO was instituted as a bridge device to subsequent retransplantation of either the heart (n = 4) or one lung (n = 2). One out of nine patients supported by ECMO for standard indications, and two out of 13 patients supported for extended indications are long-term survivors. This series illustrates the results with ECMO in emergency situations, in patients under immunosuppressive protocols, or in patients with advanced lung failure requiring almost complete artificial gas exchange. In such complex situations, ECMO does provide stabilization until additional therapeutic measures are in effect. ECMO cannot be recommended for postoperative cardiogenic shock but short-term ECMO support is an accepted method in most cases with graft failure or pulmonary failure or other origin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tissue engineering represents an attractive approach for the treatment of congestive heart failure. The influence of the differentiation of myogenic graft for functional recovery is not defined. We engineered a biodegradable skeletal muscle graft (ESMG) tissue and investigated its functional effect after implantation on the epicardium of an infarcted heart segment. ESMGs were synthesized by mixing collagen (2 mg/mL), Matrigel (2 mg/mL), and rat skeletal muscle cells (10(6)). Qualitative and quantitative aspects of ESMGs were optimized. Two weeks following coronary ligation, the animals were randomized in three groups: ESMG glued to the epicardial surface with fibrin (ESMG, n = 7), fibrin alone (fibrin, n = 5), or sham operation (sham, n = 4). Echocardiography, histology, and immunostaining were performed 4 weeks later. A cohesive three-dimensional tissular structure formed in vitro within 1 week. Myoblasts differentiated into randomly oriented myotubes. Four weeks postimplantation, ESMGs were vascularized and invaded by granulation tissue. Mean fractional shortening (FS) was, however, significantly increased in the ESMG group as compared with preimplantation values (42 +/- 6 vs. 33 +/- 5%, P < 0.05) and reached the values of controlled noninfarcted animals (control, n = 5; 45 +/- 3%; not significant). Pre- and postimplantation FS did not change over these 4 weeks in the sham group and the fibrin-treated animals. This study showed that it is possible to improve systolic heart function following myocardial infarction through implantation of differentiated muscle fibers seeded on a gel-type scaffold despite a low rate of survival.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Muscular counterpulsation (MCP) was developed for circulatory assistance by stimulation of peripheral skeletal muscles. We report on a clinical MCP study in patients with and without chronic heart failure (CHF). METHODS AND RESULTS: MCP treatment was applied (30 patients treated, 25 controls, all under optimal therapy) for 30 minutes during eight days by an ECG-triggered, battery-powered, portable pulse generator with skin electrodes inducing light contractions of calf and thigh muscles, sequentially stimulated at early diastole. Hemodynamic parameters (ECG, blood pressure and echocardiography) were measured one day before and one day after the treatment period in two groups: Group 1 (9 MCP, 11 no MCP) with ejection fraction (EF) above 40% and Group 2 (21 MCP, 14 no MCP) below 40%. In Group 2 (all patients suffering from CHF) mean EF increased by 21% (p<0.001) and stroke volume by 13% (p<0.001), while end systolic volume decreased by 23% (p<0.001). In Group 1, the increase in EF (6%) and stroke volume (8%) was also significant (p<0.05) but less pronounced than in Group 2. Physical exercise duration and walking distance increased in Group 2 by 56% and 72%, respectively. CONCLUSIONS: Noninvasive MCP treatment for eight days substantially improves cardiac function and physical performance in patients with CHF.