4 resultados para Articulated structure estimation

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

For swine dysentery, which is caused by Brachyspira hyodysenteriae infection and is an economically important disease in intensive pig production systems worldwide, a perfect or error-free diagnostic test ("gold standard") is not available. In the absence of a gold standard, Bayesian latent class modelling is a well-established methodology for robust diagnostic test evaluation. In contrast to risk factor studies in food animals, where adjustment for within group correlations is both usual and required for good statistical practice, diagnostic test evaluation studies rarely take such clustering aspects into account, which can result in misleading results. The aim of the present study was to estimate test accuracies of a PCR originally designed for use as a confirmatory test, displaying a high diagnostic specificity, and cultural examination for B. hyodysenteriae. This estimation was conducted based on results of 239 samples from 103 herds originating from routine diagnostic sampling. Using Bayesian latent class modelling comprising of a hierarchical beta-binomial approach (which allowed prevalence across individual herds to vary as herd level random effect), robust estimates for the sensitivities of PCR and culture, as well as for the specificity of PCR, were obtained. The estimated diagnostic sensitivity of PCR (95% CI) and culture were 73.2% (62.3; 82.9) and 88.6% (74.9; 99.3), respectively. The estimated specificity of the PCR was 96.2% (90.9; 99.8). For test evaluation studies, a Bayesian latent class approach is well suited for addressing the considerable complexities of population structure in food animals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During November 2010–February 2011, we used camera traps to estimate the population density of Eurasian lynx Lynx lynx in Ciglikara Nature Reserve, Turkey, an isolated population in southwest Asia. Lynx density was calculated through spatial capture—recapture models. In a sampling eff ort of 1093 camera trap days, we identifi ed 15 independent individuals and estimated a density of 4.20 independent lynx per 100 km2, an unreported high density for this species. Camera trap results also indicated that the lynx is likely to be preying on brown hare Lepus europaeus, which accounted for 63% of the non-target species pictured. As lagomorph populations tend to fl uctuate, the high lynx density recorded in Ciglikara may be temporary and may decline with prey fl uctuation. Therefore we recommend to survey other protected areas in southwestern Turkey where lynx is known or assumed to exist, and continuously monitor the lynx populations with reliable methods in order to understand the populations structure and dynamics, defi ne sensible measures and management plans to conserve this important species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The finite depth of field of a real camera can be used to estimate the depth structure of a scene. The distance of an object from the plane in focus determines the defocus blur size. The shape of the blur depends on the shape of the aperture. The blur shape can be designed by masking the main lens aperture. In fact, aperture shapes different from the standard circular aperture give improved accuracy of depth estimation from defocus blur. We introduce an intuitive criterion to design aperture patterns for depth from defocus. The criterion is independent of a specific depth estimation algorithm. We formulate our design criterion by imposing constraints directly in the data domain and optimize the amount of depth information carried by blurred images. Our criterion is a quadratic function of the aperture transmission values. As such, it can be numerically evaluated to estimate optimized aperture patterns quickly. The proposed mask optimization procedure is applicable to different depth estimation scenarios. We use it for depth estimation from two images with different focus settings, for depth estimation from two images with different aperture shapes as well as for depth estimation from a single coded aperture image. In this work we show masks obtained with this new evaluation criterion and test their depth discrimination capability using a state-of-the-art depth estimation algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, reconstruction of three-dimensional (3D) patient-specific models of a hip joint from two-dimensional (2D) calibrated X-ray images is addressed. Existing 2D-3D reconstruction techniques usually reconstruct a patient-specific model of a single anatomical structure without considering the relationship to its neighboring structures. Thus, when those techniques would be applied to reconstruction of patient-specific models of a hip joint, the reconstructed models may penetrate each other due to narrowness of the hip joint space and hence do not represent a true hip joint of the patient. To address this problem we propose a novel 2D-3D reconstruction framework using an articulated statistical shape model (aSSM). Different from previous work on constructing an aSSM, where the joint posture is modeled as articulation in a training set via statistical analysis, here it is modeled as a parametrized rotation of the femur around the joint center. The exact rotation of the hip joint as well as the patient-specific models of the joint structures, i.e., the proximal femur and the pelvis, are then estimated by optimally fitting the aSSM to a limited number of calibrated X-ray images. Taking models segmented from CT data as the ground truth, we conducted validation experiments on both plastic and cadaveric bones. Qualitatively, the experimental results demonstrated that the proposed 2D-3D reconstruction framework preserved the hip joint structure and no model penetration was found. Quantitatively, average reconstruction errors of 1.9 mm and 1.1 mm were found for the pelvis and the proximal femur, respectively.