43 resultados para Arthroscopy
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Our purpose was to study the sensitivity, specificity, and predictive values for hip adhesions, labral tears, and articular cartilage lesions in patients who had open treatment for femoroacetabular impingement, had persistent symptoms, and had both magnetic resonance arthrography (MRA) with radial slices and hip arthroscopy.
Resumo:
Little is known about the magnetic resonance imaging (MRI) appearance of canine meniscal lesions. The aim of this study is to describe the MR appearance of meniscal lesions in dogs with experimentally induced cranial cruciate ligament (CCL) deficiency. The pilot study revealed dogs weighing approximately 10 kg to be too small for meniscal evaluation on low-field MRI. In the main study, dogs weighing approximately 35 kg were used. The left CCL was transected and low-field MRI was performed regularly until 13 months post-surgery. Normal menisci were defined as grade 0. Intrameniscal lesions not reaching any surface corresponded to grade 1 if focal and to grade 2 if linear or diffuse. Grade 3 lesions consisted in linear tears penetrating a meniscal surface. Grade 4 lesions included complex signal changes or meniscal distortion. Between 2 and 13 months post-surgery, all dogs developed grade 4 lesions in the medial meniscus. Most of them corresponded to longitudinal or bucket handle tears on arthroscopy and necropsy. Two dogs showed grade 3 lesions reaching the tibial surface of the lateral meniscus on MRI but not in arthroscopy. Such tears are difficult to evaluate arthroscopically; MRI provides more accurate information about the tibial meniscal surface. Grades 1 and 2 lesions could not be differentiated from presumably normal menisci with our imaging technique. An MRI grading system better adapted to canine lesions has yet to be developed. MRI is a helpful tool for the diagnosis of complete tears in the canine meniscus, especially in larger dogs.
Resumo:
PURPOSE: The purpose of this study was to examine whether arthroscopic adhesiolysis can relieve symptoms of patients with persistent pain after open surgical hip dislocation for femoroacetabular impingement syndrome without osseous or cartilaginous alterations. METHODS: This study comprised 16 consecutive patients (6 men and 10 women; mean age, 33.5 years [range, 19 to 60 years]) with persistent pain without osseous or cartilaginous alterations after surgical hip dislocation for the treatment of femoroacetabular impingement. At index surgery, all patients had osteochondroplasty of the head-neck junction and resection of the acetabular rim with reattachment of the labrum in 9 cases. All patients had preoperative magnetic resonance imaging-arthrogram and were treated with arthroscopy of the hip. RESULTS: At arthroscopy, all reattached labra were stable. In the cases without preservation of the labrum at the index operation, the joint capsule was attached at the level of the acetabular rim and synovitis was noticed. All patients had adhesions between the neck of the femur and joint capsule or between the labrum and capsule. In 3 patients the arthroscopic procedure was technically limited by massive thickening of the capsule. Overall, 81% of patients (13/16) showed less pain or were pain-free. The Merle d'Aubigné score improved from 13 points preoperatively to 16 points at the last follow-up. CONCLUSIONS: Persistent pain after surgical dislocation of the hip without evidence of cartilaginous and osseous alterations could result from intra-articular adhesions. Hip arthroscopy after previous surgery can be demanding because of scarring. If the adhesions can be released, good results can be achieved. LEVEL OF EVIDENCE: Level IV, therapeutic case series.
Resumo:
PURPOSE: The purpose of this study was to evaluate the precision of central hip arthroscopy in the assessment and treatment of pincer-type femoroacetabular impingement (FAI) avoiding the posterolateral portal, with its close proximity to the main arterial blood supply of the femoral head, the medial circumflex femoral artery. METHODS: Seven human cadaveric hips underwent arthroscopic trimming of the acetabular labrum and rim along a preoperatively defined 105 degrees arc of resection for treatment of a presumed pincer-type lesion. After the arthroscopic procedure, all specimens were dissected and measured for evaluation of the location, quantity, and quality of the area undergoing resection. RESULTS: The difference between the actual and planned arc of resection was 18.7 degrees +/- 4.7 degrees (range, 2 degrees to 34 degrees). This was mainly because of a lack of accuracy in the presumed posterior starting point (PSP), with a mean deviation of 19 degrees +/- 3.4 degrees (range, 10 degrees to 36 degrees). Correlation analysis showed that variance in the arc of resection was mainly dependent on the PSP (r = 0.739, P = .058). CONCLUSIONS: Central hip arthroscopy is a feasible option in treating anterosuperior pincer-type FAI by use of the anterior and anterolateral portals only. This cadaveric study showed that there is a significant risk of underestimating the actual arc of resection compared with the planned arc of resection for posterosuperior pincer-type lesions because of the modest accuracy in determining the PSP of the resection. CLINICAL RELEVANCE: Accurate preoperative planning and arthroscopic identification of anatomic landmarks at the acetabular side are crucial for the definition of the appropriate starting and ending points in the treatment of pincer-type FAI. Whereas anterosuperior pincer-type lesions can be addressed very precisely with our technique, the actual resection of posterosuperior lesions averaged 19 degrees less than the planned resection, which may have clinical implications.
Resumo:
Extraction of both pelvic and femoral surface models of a hip joint from CT data for computer-assisted pre-operative planning of hip arthroscopy is addressed. We present a method for a fully automatic image segmentation of a hip joint. Our method works by combining fast random forest (RF) regression based landmark detection, atlas-based segmentation, with articulated statistical shape model (aSSM) based hip joint reconstruction. The two fundamental contributions of our method are: (1) An improved fast Gaussian transform (IFGT) is used within the RF regression framework for a fast and accurate landmark detection, which then allows for a fully automatic initialization of the atlas-based segmentation; and (2) aSSM based fitting is used to preserve hip joint structure and to avoid penetration between the pelvic and femoral models. Validation on 30 hip CT images show that our method achieves high performance in segmenting pelvis, left proximal femur, and right proximal femur surfaces with an average accuracy of 0.59 mm, 0.62 mm, and 0.58 mm, respectively.
Resumo:
BACKGROUND Arthroscopy is considered as "the gold standard" for the diagnosis of traumatic intraarticular knee lesions. However, recent developments in magnetic resonance imaging (MRI) now offer good opportunities for the indirect assessment of the integrity and structural changes of the knee articular cartilage. The study was to investigate whether cartilage-specific sequences on a 3-Tesla MRI provide accurate assessment for the detection of cartilage defects. METHODS A 3-Tesla (3-T) MRI combined with three-dimensional double-echo steady-state (3D-DESS) cartilage specific sequences was performed on 210 patients with knee pain prior to knee arthroscopy. Sensitivity, specificity, and positive and negative predictive values of magnetic resonance imaging were calculated and correlated to the arthroscopic findings of cartilaginous lesions. Lesions were classified using the modified Outerbridge classification. RESULTS For the 210 patients (1260 cartilage surfaces: patella, trochlea, medial femoral condyle, medial tibia, lateral femoral condyle, lateral tibia) evaluated, the sensitivities, specificities, positive predictive values, and negative predictive values of 3-T MRI were 83.3, 99.8, 84.4, and 99.8 %, respectively, for the detection of grade IV lesions; 74.1, 99.6, 85.2, and 99.3 %, respectively, for grade III lesions; 67.9, 99.2, 76.6, and 98.2 %, respectively, for grade II lesions; and 8.8, 99.5, 80, and 92 %, respectively, for grade I lesions. CONCLUSIONS For grade III and IV lesions, 3-T MRI combined with 3D-DESS cartilage-specific sequences represents an accurate diagnostic tool. For grade II lesions, the technique demonstrates moderate sensitivity, while for grade I lesions, the sensitivity is limited to provide reliable diagnosis compared to knee arthroscopy.
Resumo:
The management of insufficiency fractures of the tibial plateau in osteoporotic patients can be very challenging, since it is difficult to achieve a stable fixation, an essential condition for the patients' early mobilization. We present a minimally invasive technique for the treatment of proximal tibial plateau fractures, "tibiaplasty", using percutaneous polymethylmethacrylate augmentation. Five osteoporotic patients (7 fractures) with a non-traumatic insufficiency tibial plateau fracture were treated with this technique at the authors' institution from 2006 to 2008. The patients' median age was 79 (range 62-88) years. The intervention was performed percutaneously under general or spinal anesthesia; after the intervention, immediate full weight bearing was allowed. The technique was feasible in all patients and no complications related to the intervention were observed. All patients reported a relevant reduction in pain, were able to mobilize with full weight bearing and would undergo the operation again. No secondary loss of reduction or progression of arthrosis was observed in radiological controls; no revision surgery was required. Our initial results indicate that tibiaplasty is a good treatment option for the management of insufficiency in tibial plateau fractures in osteoporotic patients. The technique is minimally invasive, safe and allows immediate mobilization without restrictions. In our group of patients, we found excellent early to mid-term results.
Resumo:
There is emerging evidence that even mild slipped capital femoral epiphysis leads to early articular damage. Therefore, we have begun treating patients with mild slips and signs of impingement with in situ pinning and immediate arthroscopic osteoplasty. DESCRIPTION OF TECHNIQUES: Surgery was performed using the fracture table. After in situ pinning and diagnostic arthroscopy, peripheral compartment access was obtained and head-neck osteoplasty was completed.