2 resultados para Architecture projects

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recovering the architecture is the first step towards reengineering a software system. Many reverse engineering tools use top-down exploration as a way of providing a visual and interactive process for architecture recovery. During the exploration process, the user navigates through various views on the system by choosing from several exploration operations. Although some sequences of these operations lead to views which, from the architectural point of view, are mode relevant than others, current tools do not provide a way of predicting which exploration paths are worth taking and which are not. In this article we propose a set of package patterns which are used for augmenting the exploration process with in formation about the worthiness of the various exploration paths. The patterns are defined based on the internal package structure and on the relationships between the package and the other packages in the system. To validate our approach, we verify the relevance of the proposed patterns for real-world systems by analyzing their frequency of occurrence in six open-source software projects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Architectural decisions can be interpreted as structural and behavioral constraints that must be enforced in order to guarantee overarching qualities in a system. Enforcing those constraints in a fully automated way is often challenging and not well supported by current tools. Current approaches for checking architecture conformance either lack in usability or offer poor options for adaptation. To overcome this problem we analyze the current state of practice and propose an approach based on an extensible, declarative and empirically-grounded specification language. This solution aims at reducing the overall cost of setting up and maintaining an architectural conformance monitoring environment by decoupling the conceptual representation of a user-defined rule from its technical specification prescribed by the underlying analysis tools. By using a declarative language, we are able to write tool-agnostic rules that are simple enough to be understood by untrained stakeholders and, at the same time, can be can be automatically processed by a conformance checking validator. Besides addressing the issue of cost, we also investigate opportunities for increasing the value of conformance checking results by assisting the user towards the full alignment of the implementation with respect to its architecture. In particular, we show the benefits of providing actionable results by introducing a technique which automatically selects the optimal repairing solutions by means of simulation and profit-based quantification. We perform various case studies to show how our approach can be successfully adopted to support truly diverse industrial projects. We also investigate the dynamics involved in choosing and adopting a new automated conformance checking solution within an industrial context. Our approach reduces the cost of conformance checking by avoiding the need for an explicit management of the involved validation tools. The user can define rules using a convenient high-level DSL which automatically adapts to emerging analysis requirements. Increased usability and modular customization ensure lower costs and a shorter feedback loop.