13 resultados para Arbitrary sizes
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
OBJECTIVES: To determine sample sizes in studies on diagnostic accuracy and the proportion of studies that report calculations of sample size. DESIGN: Literature survey. DATA SOURCES: All issues of eight leading journals published in 2002. METHODS: Sample sizes, number of subgroup analyses, and how often studies reported calculations of sample size were extracted. RESULTS: 43 of 8999 articles were non-screening studies on diagnostic accuracy. The median sample size was 118 (interquartile range 71-350) and the median prevalence of the target condition was 43% (27-61%). The median number of patients with the target condition--needed to calculate a test's sensitivity--was 49 (28-91). The median number of patients without the target condition--needed to determine a test's specificity--was 76 (27-209). Two of the 43 studies (5%) reported a priori calculations of sample size. Twenty articles (47%) reported results for patient subgroups. The number of subgroups ranged from two to 19 (median four). No studies reported that sample size was calculated on the basis of preplanned analyses of subgroups. CONCLUSION: Few studies on diagnostic accuracy report considerations of sample size. The number of participants in most studies on diagnostic accuracy is probably too small to analyse variability of measures of accuracy across patient subgroups.
Resumo:
Correspondence establishment is a key step in statistical shape model building. There are several automated methods for solving this problem in 3D, but they usually can only handle objects with simple topology, like that of a sphere or a disc. We propose an extension to correspondence establishment over a population based on the optimization of the minimal description length function, allowing considering objects with arbitrary topology. Instead of using a fixed structure of kernel placement on a sphere for the systematic manipulation of point landmark positions, we rely on an adaptive, hierarchical organization of surface patches. This hierarchy can be built on surfaces of arbitrary topology and the resulting patches are used as a basis for a consistent, multi-scale modification of the surfaces' parameterization, based on point distribution models. The feasibility of the approach is demonstrated on synthetic models with different topologies.
Resumo:
Sample size calculations are advocated by the CONSORT group to justify sample sizes in randomized controlled trials (RCTs). The aim of this study was primarily to evaluate the reporting of sample size calculations, to establish the accuracy of these calculations in dental RCTs and to explore potential predictors associated with adequate reporting. Electronic searching was undertaken in eight leading specific and general dental journals. Replication of sample size calculations was undertaken where possible. Assumed variances or odds for control and intervention groups were also compared against those observed. The relationship between parameters including journal type, number of authors, trial design, involvement of methodologist, single-/multi-center study and region and year of publication, and the accuracy of sample size reporting was assessed using univariable and multivariable logistic regression. Of 413 RCTs identified, sufficient information to allow replication of sample size calculations was provided in only 121 studies (29.3%). Recalculations demonstrated an overall median overestimation of sample size of 15.2% after provisions for losses to follow-up. There was evidence that journal, methodologist involvement (OR = 1.97, CI: 1.10, 3.53), multi-center settings (OR = 1.86, CI: 1.01, 3.43) and time since publication (OR = 1.24, CI: 1.12, 1.38) were significant predictors of adequate description of sample size assumptions. Among journals JCP had the highest odds of adequately reporting sufficient data to permit sample size recalculation, followed by AJODO and JDR, with 61% (OR = 0.39, CI: 0.19, 0.80) and 66% (OR = 0.34, CI: 0.15, 0.75) lower odds, respectively. Both assumed variances and odds were found to underestimate the observed values. Presentation of sample size calculations in the dental literature is suboptimal; incorrect assumptions may have a bearing on the power of RCTs.
Resumo:
Effects of conspecific neighbours on survival and growth of trees have been found to be related to species abundance. Both positive and negative relationships may explain observed abundance patterns. Surprisingly, it is rarely tested whether such relationships could be biased or even spurious due to transforming neighbourhood variables or influences of spatial aggregation, distance decay of neighbour effects and standardization of effect sizes. To investigate potential biases, communities of 20 identical species were simulated with log-series abundances but without species-specific interactions. No relationship of conspecific neighbour effects on survival or growth with species abundance was expected. Survival and growth of individuals was simulated in random and aggregated spatial patterns using no, linear, or squared distance decay of neighbour effects. Regression coefficients of statistical neighbourhood models were unbiased and unrelated to species abundance. However, variation in the number of conspecific neighbours was positively or negatively related to species abundance depending on transformations of neighbourhood variables, spatial pattern and distance decay. Consequently, effect sizes and standardized regression coefficients, often used in model fitting across large numbers of species, were also positively or negatively related to species abundance depending on transformation of neighbourhood variables, spatial pattern and distance decay. Tests using randomized tree positions and identities provide the best benchmarks by which to critically evaluate relationships of effect sizes or standardized regression coefficients with tree species abundance. This will better guard against potential misinterpretations.
Resumo:
Partial differential equation (PDE) solvers are commonly employed to study and characterize the parameter space for reaction-diffusion (RD) systems while investigating biological pattern formation. Increasingly, biologists wish to perform such studies with arbitrary surfaces representing ‘real’ 3D geometries for better insights. In this paper, we present a highly optimized CUDA-based solver for RD equations on triangulated meshes in 3D. We demonstrate our solver using a chemotactic model that can be used to study snakeskin pigmentation, for example. We employ a finite element based approach to perform explicit Euler time integrations. We compare our approach to a naive GPU implementation and provide an in-depth performance analysis, demonstrating the significant speedup afforded by our optimizations. The optimization strategies that we exploit could be generalized to other mesh based processing applications with PDE simulations.
Resumo:
In this article we present a computational framework for isolating spatial patterns arising in the steady states of reaction-diffusion systems. Such systems have been used to model many different phenomena in areas such as developmental and cancer biology, cell motility and material science. Often one is interested in identifying parameters which will lead to a particular pattern. To attempt to answer this, we compute eigenpairs of the Laplacian on a variety of domains and use linear stability analysis to determine parameter values for the system that will lead to spatially inhomogeneous steady states whose patterns correspond to particular eigenfunctions. This method has previously been used on domains and surfaces where the eigenvalues and eigenfunctions are found analytically in closed form. Our contribution to this methodology is that we numerically compute eigenpairs on arbitrary domains and surfaces. Here we present various examples and demonstrate that mode isolation is straightforward especially for low eigenvalues. Additionally we see that if two or more eigenvalues are in a permissible range then the inhomogeneous steady state can be a linear combination of the respective eigenfunctions. Finally we show an example which suggests that pattern formation is robust on similar surfaces in cases that the surface either has or does not have a boundary.