10 resultados para Approach through a game
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
BACKGROUND Currently only a few reports exist on how to prepare medical students for skills laboratory training. We investigated how students and tutors perceive a blended learning approach using virtual patients (VPs) as preparation for skills training. METHODS Fifth-year medical students (N=617) were invited to voluntarily participate in a paediatric skills laboratory with four specially designed VPs as preparation. The cases focused on procedures in the laboratory using interactive questions, static and interactive images, and video clips. All students were asked to assess the VP design. After participating in the skills laboratory 310 of the 617 students were additionally asked to assess the blended learning approach through established questionnaires. Tutors' perceptions (N=9) were assessed by semi-structured interviews. RESULTS From the 617 students 1,459 VP design questionnaires were returned (59.1%). Of the 310 students 213 chose to participate in the skills laboratory; 179 blended learning questionnaires were returned (84.0%). Students provided high overall acceptance ratings of the VP design and blended learning approach. By using VPs as preparation, skills laboratory time was felt to be used more effectively. Tutors perceived students as being well prepared for the skills laboratory with efficient uses of time. CONCLUSION The overall acceptance of the blended learning approach was high among students and tutors. VPs proved to be a convenient cognitive preparation tool for skills training.
Resumo:
In 2009, the International Commission on Radiological Protection issued a statement on radon which stated that the dose conversion factor for radon progeny would likely double, and the calculation of risk from radon should move to a dosimetric approach, rather than the longstanding epidemiological approach. Through the World Nuclear Association, whose members represent over 90% of the world's uranium production, industry has been examining this issue with a goal of offering expertise and knowledge to assist with the practical implementation of these evolutionary changes to evaluating the risk from radon progeny. Industry supports the continuing use of the most current epidemiological data as a basis for risk calculation, but believes that further examination of these results is needed to better understand the level of conservatism in the potential epidemiological-based risk models. With regard to adoption of the dosimetric approach, industry believes that further work is needed before this is a practical option. In particular, this work should include a clear demonstration of the validation of the dosimetric model which includes how smoking is handled, the establishment of a practical measurement protocol, and the collection of relevant data for modern workplaces. Industry is actively working to address the latter two items.
Resumo:
Object-oriented modelling languages such as EMOF are often used to specify domain specific meta-models. However, these modelling languages lack the ability to describe behavior or operational semantics. Several approaches have used a subset of Java mixed with OCL as executable meta-languages. In this experience report we show how we use Smalltalk as an executable meta-language in the context of the Moose reengineering environment. We present how we implemented EMOF and its behavioral aspects. Over the last decade we validated this approach through incrementally building a meta-described reengineering environment. Such an approach bridges the gap between a code-oriented view and a meta-model driven one. It avoids the creation of yet another language and reuses the infrastructure and run-time of the underlying implementation language. It offers an uniform way of letting developers focus on their tasks while at the same time allowing them to meta-describe their domain model. The advantage of our approach is that developers use the same tools and environment they use for their regular tasks. Still the approach is not Smalltalk specific but can be applied to language offering an introspective API such as Ruby, Python, CLOS, Java and C#.
Resumo:
Electrochemical reactivity and structure properties of electrogenic bacteria, Geobacter sulfurreducens (Gs) were studied to explore the heterogeneous electron transfer at the bacteria/electrode interface using electrochemical and in-situ spectroscopic techniques. The redox behavior of Gs adsorbed on a gold electrode, which is modified with a ω-functionalized self-assembled monolayer (SAM) of alkanethiols, depends strongly on the terminal group. The latter interacts directly with outermost cytochromes embedded into the outer membrane of the Gs cells. The redox potential of bacterial cells bound electrostatically to a carboxyl-terminated SAM is close to that observed for bacteria attached to a bare gold electrode, revealing a high electronic coupling at the cell/SAM interface. The redox potentials of bacterial cells adsorbed on amino- and pyridyl-terminated SAMs are significantly different suggesting that the outermost cytochromes changes their conformation upon adsorption on these SAMs. No redox activity of Gs was found with CH3-, N(CH3)3+- and OH-terminated SAMs. Complementary in-situ spectroscopic studies on bacteria/SAMs/Au electrode assemblies were carried out to monitor structure changes of the bacterial cells upon polarization. Spectro-electrochemical techniques revealed the electrochemical turnover of the oxidized and reduced states of outer membrane cytochromes (OMCs) in Gs, providing evidence that the OMCs are responsible for the direct electron transfer to metal electrodes, such as gold or silver, during the electricity production. Furthermore, we observed spectroscopic signatures of the native structure of the OMCs and no conformational change during the oxidation/reduction process of the microorganisms. These findings indicate that the carboxyl-anchoring group provides biocompatible conditions for the outermost cytochromes of the Gs, which facilitate the heterogeneous electron transfer at the microorganism/electrode interface.
Resumo:
Single molecular junction conductances of a family of five symmetric and two unsymmetric perylene tetracarboxylic bisimides (PBI) with variable bay-area substituents were studied employing a scanning tunneling microscope (STM)-based break junction technique. The stretching experiments provide clear evidence for the formation of single molecular junctions and π–π stacked dimers. Electrolyte gating demonstrates a distinct gating effect in symmetric molecular junctions, which strongly depends on molecular structure and properties of the solvent/electrolyte. Weak π–π-coupling in the unsymmetric dimers prevents rectification.
Resumo:
Engineers are confronted with the energy demand of active medical implants in patients with increasing life expectancy. Scavenging energy from the patient’s body is envisioned as an alternative to conventional power sources. Joining in this effort towards human-powered implants, we propose an innovative concept that combines the deformation of an artery resulting from the arterial pressure pulse with a transduction mechanism based on magneto-hydrodynamics. To overcome certain limitations of a preliminary analytical study on this topic, we demonstrate here a more accurate model of our generator by implementing a three-dimensional multiphysics finite element method (FEM) simulation combining solid mechanics, fluid mechanics, electric and magnetic fields as well as the corresponding couplings. This simulation is used to optimize the generator with respect to several design parameters. A first validation is obtained by comparing the results of the FEM simulation with those of the analytical approach adopted in our previous study. With an expected overall conversion efficiency of 20% and an average output power of 30 μW, our generator outperforms previous devices based on arterial wall deformation by more than two orders of magnitude. Most importantly, our generator provides sufficient power to supply a cardiac pacemaker.
Resumo:
Main objective of the game is to increase the coping capacity of players and familiarise them with the Integrated Disaster Reduction Approach. The game is intended to prepare for and introduce the players to a subsequent Learning for Sustainability capacity building workshop for community leaders. The game represents a typical emergency situation resulting from a natural disaster. Before and after the event, adequate measures help to prevent or minimise potential damages. Once a disaster has occurred, concerted actions and immediate measures need to be taken to rescue as much as possible (human lives, livestock, material) and safeguard the village against further damage and losses. In the course of the game, each playing team can proof its knowledge on adequate measures that have to be taken in order to avoid or reduce losses related to natural disasters. Such measures relate to assessment and monitoring of risks, prevention and mitigation measures, preparedness and response as well as recovery and reconstruction.
Resumo:
PURPOSE The pararectus approach has been validated for managing acetabular fractures. We hypothesised it might be an alternative approach for performing periacetabular osteotomy (PAO). METHODS Using four cadaver specimens, we randomly performed PAO through either the pararectus or a modified Smith-Petersen (SP) approach. We assessed technical feasibility and safety. Furthermore, we controlled fragment mobility using a surgical navigation system and compared mobility between approaches. The navigation system's accuracy was tested by cross-examination with validated preoperative planning software. RESULTS The pararectus approach is technically feasible, allowing for adequate exposure, safe osteotomies and excellent control of structures at risk. Fragment mobility is equal to that achieved through the SP approach. Validation of these measurements yielded a mean difference of less <1 mm without statistical significance. CONCLUSION Experimental data suggests the pararectus approach might be an alternative approach for performing PAO. Clinical validation is necessary to confirm these promising preliminary results.