64 resultados para Application level
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
In this study, we evaluated the potential use of entomopathogenic nematodes as a control for the beetle Aethina tumida Murray (Coleoptera: Nitidulidae). In particular, we conducted 1) four screening bioassays to determine nematode (seven species, 10 total strains tested) and application level effects on A. tumida larvae and pupae, 2) a generational persistence bioassay to determine whether single inoculations with nematodes would control multiple generations of A. tumida larvae in treated soil, and 3) a field bioassay to determine whether the nematodes would remain efficacious in the field. In the screening bioassays, nematode efficacy varied significantly by tested nematode and the infective juvenile (IJ) level at which they were applied. Although nematode virulence was moderate in screening bioassays 1-3 (0 - 68% A. tumida mortality), A. tumida mortality approached higher levels in screening bioassay 4 (nearly 100% after 39 d) that suggest suitable applicability of some of the test nematodes as field controls for A. tumida. In the generational persistence bioassay, Steinernema Hobrave Cabanillas, Poinar & Raulston 7-12 strain and Heterorhabditis indica Poinar, Karunaka & David provided adequate A. tumida control for 19 wk after a single soil inoculation (76-94% mortality in A. tumida pupae). In the field bioassay, the same two nematode species also showed high virulence toward pupating A. tumida (88-100%) mortality. Our data suggest that nematode use may be an integral component of an integrated pest management scheme aimed at reducing A. tumida populations in bee colonies to tolerable levels.
Resumo:
The widespread use of wireless enabled devices and the increasing capabilities of wireless technologies has promoted multimedia content access and sharing among users. However, the quality perceived by the users still depends on multiple factors such as video characteristics, device capabilities, and link quality. While video characteristics include the video time and spatial complexity as well as the coding complexity, one of the most important device characteristics is the battery lifetime. There is the need to assess how these aspects interact and how they impact the overall user satisfaction. This paper advances previous works by proposing and validating a flexible framework, named EViTEQ, to be applied in real testbeds to satisfy the requirements of performance assessment. EViTEQ is able to measure network interface energy consumption with high precision, while being completely technology independent and assessing the application level quality of experience. The results obtained in the testbed show the relevance of combined multi-criteria measurement approaches, leading to superior end-user satisfaction perception evaluation .
Resumo:
This abstract presents the biomechanical model that is used in the European ContraCancrum project, aiming at simulating tumor evolution in the brain and lung. The construction of the finite element model as well as a simulation of tumor growth are shown. The construction of the mesh is fully automatic and is therefore compatible with a clinical application. This biomechanical model will be later combined to a cellular level simulator also developed in the project.
Resumo:
Neurally adjusted ventilatory assist (NAVA) delivers airway pressure (P(aw)) in proportion to the electrical activity of the diaphragm (EAdi) using an adjustable proportionality constant (NAVA level, cm·H(2)O/μV). During systematic increases in the NAVA level, feedback-controlled down-regulation of the EAdi results in a characteristic two-phased response in P(aw) and tidal volume (Vt). The transition from the 1st to the 2nd response phase allows identification of adequate unloading of the respiratory muscles with NAVA (NAVA(AL)). We aimed to develop and validate a mathematical algorithm to identify NAVA(AL). P(aw), Vt, and EAdi were recorded while systematically increasing the NAVA level in 19 adult patients. In a multistep approach, inspiratory P(aw) peaks were first identified by dividing the EAdi into inspiratory portions using Gaussian mixture modeling. Two polynomials were then fitted onto the curves of both P(aw) peaks and Vt. The beginning of the P(aw) and Vt plateaus, and thus NAVA(AL), was identified at the minimum of squared polynomial derivative and polynomial fitting errors. A graphical user interface was developed in the Matlab computing environment. Median NAVA(AL) visually estimated by 18 independent physicians was 2.7 (range 0.4 to 5.8) cm·H(2)O/μV and identified by our model was 2.6 (range 0.6 to 5.0) cm·H(2)O/μV. NAVA(AL) identified by our model was below the range of visually estimated NAVA(AL) in two instances and was above in one instance. We conclude that our model identifies NAVA(AL) in most instances with acceptable accuracy for application in clinical routine and research.
Resumo:
Modeling of tumor growth has been performed according to various approaches addressing different biocomplexity levels and spatiotemporal scales. Mathematical treatments range from partial differential equation based diffusion models to rule-based cellular level simulators, aiming at both improving our quantitative understanding of the underlying biological processes and, in the mid- and long term, constructing reliable multi-scale predictive platforms to support patient-individualized treatment planning and optimization. The aim of this paper is to establish a multi-scale and multi-physics approach to tumor modeling taking into account both the cellular and the macroscopic mechanical level. Therefore, an already developed biomodel of clinical tumor growth and response to treatment is self-consistently coupled with a biomechanical model. Results are presented for the free growth case of the imageable component of an initially point-like glioblastoma multiforme tumor. The composite model leads to significant tumor shape corrections that are achieved through the utilization of environmental pressure information and the application of biomechanical principles. Using the ratio of smallest to largest moment of inertia of the tumor material to quantify the effect of our coupled approach, we have found a tumor shape correction of 20\% by coupling biomechanics to the cellular simulator as compared to a cellular simulation without preferred growth directions. We conclude that the integration of the two models provides additional morphological insight into realistic tumor growth behavior. Therefore, it might be used for the development of an advanced oncosimulator focusing on tumor types for which morphology plays an important role in surgical and/or radio-therapeutic treatment planning.
Resumo:
The aim of the present article is to contribute to the debate on the role of research in sustainable management of water and related resources, based on experiences in the Upper Ewaso Ng’iro and Pangani river basins in East Africa. Both basins are characterised by humid, resource-rich highlands and extensive semi-arid lowlands, by growing demand for water and related resources, and by numerous conflicting stakeholder interests. Issues of scale and level, on the one hand, and the normative dimension of sustainability, on the other hand, are identified as key challenges for research that seeks to produce relevant and applicable results for informed decision-making. A multi-level and multi-stakeholder perspective, defined on the basis of three minimal principles, is proposed here as an approach to research for informed decision-making. Key lessons learnt from applying these principles in the two river basins are presented and discussed in the light of current debate.
Resumo:
Local to regional climate anomalies are to a large extent determined by the state of the atmospheric circulation. The knowledge of large-scale sea level pressure (SLP) variations in former times is therefore crucial when addressing past climate changes across Europe and the Mediterranean. However, currently available SLP reconstructions lack data from the ocean, particularly in the pre-1850 period. Here we present a new statistically-derived 5° × 5° resolved gridded seasonal SLP dataset covering the eastern North Atlantic, Europe and the Mediterranean area (40°W–50°E; 20°N–70°N) back to 1750 using terrestrial instrumental pressure series and marine wind information from ship logbooks. For the period 1750–1850, the new SLP reconstruction provides a more accurate representation of the strength of the winter westerlies as well as the location and variability of the Azores High than currently available multiproxy pressure field reconstructions. These findings strongly support the potential of ship logbooks as an important source to determine past circulation variations especially for the pre-1850 period. This new dataset can be further used for dynamical studies relating large-scale atmospheric circulation to temperature and precipitation variability over the Mediterranean and Eurasia, for the comparison with outputs from GCMs as well as for detection and attribution studies.
Resumo:
Our society uses a large diversity of co-existing wired and wireless networks in order to satisfy its communication needs. A cooper- ation between these networks can benefit performance, service availabil- ity and deployment ease, and leads to the emergence of hybrid networks. This position paper focuses on a hybrid mobile-sensor network identify- ing potential advantages and challenges of its use and defining feasible applications. The main value of the paper, however, is in the proposed analysis approach to evaluate the performance at the mobile network side given the mixed mobile-sensor traffic. The approach combines packet- level analysis with modelling of flow-level behaviour and can be applied for the study of various application scenarios. In this paper we consider two applications with distinct traffic models namely multimedia traffic and best-effort traffic.
Resumo:
Epileptic seizures are due to the pathological collective activity of large cellular assemblies. A better understanding of this collective activity is integral to the development of novel diagnostic and therapeutic procedures. In contrast to reductionist analyses, which focus solely on small-scale characteristics of ictogenesis, here we follow a systems-level approach, which combines both small-scale and larger-scale analyses. Peri-ictal dynamics of epileptic networks are assessed by studying correlation within and between different spatial scales of intracranial electroencephalographic recordings (iEEG) of a heterogeneous group of patients suffering from pharmaco-resistant epilepsy. Epileptiform activity as recorded by a single iEEG electrode is determined objectively by the signal derivative and then subjected to a multivariate analysis of correlation between all iEEG channels. We find that during seizure, synchrony increases on the smallest and largest spatial scales probed by iEEG. In addition, a dynamic reorganization of spatial correlation is observed on intermediate scales, which persists after seizure termination. It is proposed that this reorganization may indicate a balancing mechanism that decreases high local correlation. Our findings are consistent with the hypothesis that during epileptic seizures hypercorrelated and therefore functionally segregated brain areas are re-integrated into more collective brain dynamics. In addition, except for a special sub-group, a highly significant association is found between the location of ictal iEEG activity and the location of areas of relative decrease of localised EEG correlation. The latter could serve as a clinically important quantitative marker of the seizure onset zone (SOZ).
Resumo:
Partner notification (PN or contact tracing) is an important aspect of treating bacterial sexually transmitted infections (STIs), such as Chlamydia trachomatis. It facilitates the identification of new infected cases that can be treated through individual case management. PN also acts indirectly by limiting onward transmission in the general population. However, the impact of PN, both at the level of individuals and the population, remains unclear. Since it is difficult to study the effects of PN empirically, mathematical and computational models are useful tools for investigating its potential as a public health intervention. To this end, we developed an individual-based modeling framework called Rstisim. It allows the implementation of different models of STI transmission with various levels of complexity and the reconstruction of the complete dynamic sexual partnership network over any time period. A key feature of this framework is that we can trace an individual's partnership history in detail and investigate the outcome of different PN strategies for C. trachomatis. For individual case management, the results suggest that notifying three or more partners from the preceding 18 months yields substantial numbers of new cases. In contrast, the successful treatment of current partners is most important for preventing re-infection of index cases and reducing further transmission of C. trachomatis at the population level. The findings of this study demonstrate the difference between individual and population level outcomes of public health interventions for STIs.