34 resultados para Apple tree -- Climatic factors
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Climate affects the timing, rate and dynamics of tree growth, over time scales ranging from seconds to centuries. Monitoring how a tree's stem radius varies over these time scales can provide insight into intra-annual stem dynamics and improve our understanding of climate impacts on tree physiology and growth processes. Here, we quantify the response of radial conifer stem size to environmental fluctuations via a novel assessment of tree circadian cycles. We analyze four years of sub-hourly data collected from 56 larch and spruce trees growing along a natural temperature gradient of ∼6 °C in the central Swiss Alps. During the growing season, tree stem diameters were greatest at mid-morning and smallest in the late evening, reflecting the daily cycle of water uptake and loss. Along the gradient, amplitudes calculated from the stem radius cycle were ∼50% smaller at the upper site (∼2200 m a.s.l.) relative to the lower site (∼800 m a.s.l.). We show changes in precipitation, temperature and cloud cover have a substantial effect on typical growing season diurnal cycles; amplitudes were nine times smaller on rainy days (>10 mm), and daily amplitudes are approximately 40% larger when the mean daily temperature is 15–20 °C than when it is 5–10 °C. We find that over the growing season in the sub-alpine forests, spruce show greater daily stem water movement than larch. However, under projected future warming, larch could experience up to 50% greater stem water use, which may severely affect future growth on already dry sites. Our data further indicate that because of the confounding influences of radial growth and short-term water dynamics on stem size, conventional methodology probably overstates the effect of water-linked meteorological variables (i.e. precipitation and relative humidity) on intra-annual tree growth. We suggest future studies use intra-seasonal measurements of cell development and consider whether climatic factors produce reversible changes in stem diameter. These study design elements may help researchers more accurately quantify and attribute changes in forest productivity in response to future warming.
Resumo:
The aim of this study was to analyse the effects of climatic factors (i.e. monthly mean temperature and total precipitation) on radial growth (earlywood width, latewood width, and total ringwidth) and on latewood stable carbon isotope composition in a pedunculate oak (Quercus robur L) stand in northeastern Hungary. Earlywood widths showed the weakest common variance and lack of statistically significant relationship to monthly precipitation and temperature. Latewood width showed the strongest common chronological signal. Correlation analysis with the monthly climate series pointed out the strongest positive/negative correlation with June precipitation for latewood width/stable carbon isotope ratio. These parameters shared the strongest climatic response also for seasonal scale since the highest correlation coefficients, 0.49 and -0.62 for latewood width and stable carbon isotope ratio, respectively, were obtained for both with a 10-month precipitation total (from previous November to current August of the growing season). A combined parameter, derived as difference between latewood width and stable carbon isotope indices showed improved statistical relationship compared to the hydroclimatic calibration target both for local and regional spatial scales. Spatial correlation analysis indicated that the hydroclimatic signal encoded in these moisture sensitive tree-ring parameters from Bakta Forest is expected to be representative for the northeastern Carpathians and for the large part of the Great Hungarian Plain. In addition, the hydroclimatic signal of latewood width chronology was compared to three independent records. Results showed that neither the strength nor the rank of the similarity of the local hydroclimate signals were stable throughout the past two centuries. Future palaeo(hydro)climatological efforts targeting the Carpathian(-Balkan) region are recommended to track carefully the spatial domains for which a given, local, proxy-derived hydroclimate reconstruction might provide useful information.
Resumo:
Campylobacter, a major zoonotic pathogen, displays seasonality in poultry and in humans. In order to identify temporal patterns in the prevalence of thermophilic Campylobacter spp. in a voluntary monitoring programme in broiler flocks in Germany and in the reported human incidence, time series methods were used. The data originated between May 2004 and June 2007. By the use of seasonal decomposition, autocorrelation and cross-correlation functions, it could be shown that an annual seasonality is present. However, the peak month differs between sample submission, prevalence in broilers and human incidence. Strikingly, the peak in human campylobacterioses preceded the peak in broiler prevalence in Lower Saxony rather than occurring after it. Significant cross-correlations between monthly temperature and prevalence in broilers as well as between human incidence, monthly temperature, rainfall and wind-force were identified. The results highlight the necessity to quantify the transmission of Campylobacter from broiler to humans and to include climatic factors in order to gain further insight into the epidemiology of this zoonotic disease.
Resumo:
RATIONALELow-budget rain collectors for water isotope analysis, such as the `ball-in-funnel type collector' (BiFC), are widely used in studies on stable water isotopes of rain. To date, however, an experimental quality assessment of such devices in relation to climatic factors does not exist. METHODSWe used Cavity Ring-Down Spectrometry (CRDS) to quantify the effects of evaporation on the O-18 values of reference water under controlled conditions as a function of the elapsed time between rainfall and collection for isotope analysis, the sample volume and the relative humidity (RH: 31% and 67%; 25 degrees C). The climate chamber conditions were chosen to reflect the warm and dry end of field conditions that favor evaporative enrichment (EE). We also tested the performance of the BiFC in the field, and compared our H-2/O-18 data obtained by isotope ratio mass spectrometry (IRMS) with those from the Swiss National Network for the Observation of Isotopes in the Water Cycle (ISOT). RESULTSThe EE increased with time, with a 1 increase in the O-18 values after 10days (RH: 25%; 25 degrees C; 35mL (corresponding to a 5mm rain event); p <0.001). The sample volume strongly affected the EE (max. value +1.5 parts per thousand for 7mL samples (i.e., 1mm rain events) after 72h at 31% and 67% RH; p <0.001), whereas the relative humidity had no significant effect. Using the BiFC in the field, we obtained very tight relationships of the H-2/O-18 values (r(2) 0.95) for three sites along an elevational gradient, not significantly different from that of the next ISOT station. CONCLUSIONSSince the chosen experimental conditions were extreme compared with the field conditions, it was concluded that the BiFC is a highly reliable and inexpensive collector of rainwater for isotope analysis. Copyright (c) 2014 John Wiley & Sons, Ltd.
Resumo:
Modeling of future water systems at the regional scale is a difficult task due to the complexity of current structures (multiple competing water uses, multiple actors, formal and informal rules) both temporally and spatially. Representing this complexity in the modeling process is a challenge that can be addressed by an interdisciplinary and holistic approach. The assessment of the water system of the Crans-Montana-Sierre area (Switzerland) and its evolution until 2050 were tackled by combining glaciological, hydrogeological, and hydrological measurements and modeling with the evaluation of water use through documentary, statistical and interview-based analyses. Four visions of future regional development were co-produced with a group of stakeholders and were then used as a basis for estimating future water demand. The comparison of the available water resource and the water demand at monthly time scale allowed us to conclude that for the four scenarios socioeconomic factors will impact on the future water systems more than climatic factors. An analysis of the sustainability of the current and future water systems based on four visions of regional development allowed us to identify those scenarios that will be more sustainable and that should be adopted by the decision-makers. The results were then presented to the stakeholders through five key messages. The challenges of communicating the results in such a way with stakeholders are discussed at the end of the article.
Resumo:
Aim Geographical, climatic and soil factors are major drivers of plant beta diversity, but their importance for dryland plant communities is poorly known. The aim of this study was to: (1) characterize patterns of beta diversity in global drylands; (2) detect common environmental drivers of beta diversity; and (3) test for thresholds in environmental conditions driving potential shifts in plant species composition. Location Global. Methods Beta diversity was quantified in 224 dryland plant communities from 22 geographical regions on all continents except Antarctica using four complementary measures: the percentage of singletons (species occurring at only one site); Whittaker's beta diversity, β(W); a directional beta diversity metric based on the correlation in species occurrences among spatially contiguous sites, β(R2); and a multivariate abundance-based metric, β(MV). We used linear modelling to quantify the relationships between these metrics of beta diversity and geographical, climatic and soil variables. Results Soil fertility and variability in temperature and rainfall, and to a lesser extent latitude, were the most important environmental predictors of beta diversity. Metrics related to species identity percentage of singletons and β(W) were most sensitive to soil fertility, whereas those metrics related to environmental gradients and abundance (β(R2) and β(MV) were more associated with climate variability. Interactions among soil variables, climatic factors and plant cover were not important determinants of beta diversity. Sites receiving less than 178 mm of annual rainfall differed sharply in species composition from more mesic sites (> 200 mm). Main conclusions Soil fertility and variability in temperature and rainfall are the most important environmental predictors of variation in plant beta diversity in global drylands. Our results suggest that those sites annually receiving c. 178 mm of rainfall will be especially sensitive to future climate changes. These findings may help to define appropriate conservation strategies for mitigating effects of climate change on dryland vegetation.
Resumo:
In a first step to obtain a proxy record of past climatic events (including the El Ni (n) over tildeo-Southern Oscillation) in the normally aseasonal tropical environment of Sabah, a radial segment from a recently fallen dipterocarp (Shorea Superba) was radiocarbon dated and subjected to carbon isotope analysis. The high-precision radiocarbon results fell into the ambiguous modern plateau where several calibrated dates can exist for each sample. Dating was achieved by wiggle matching using a Bayesian approach to calibration. Using the defined growth characteristics of Shorea superba, probability density distributions were calculated and improbable dates rejected. It was found that the tree most likely started growing around AD 1660-1685. A total of 173 apparent growth increments were measured and, therefore, it could be determined that the tree formed one ring approximately every two years. Stable carbon isotope values were obtained from resin-extracted wholewood from each ring. Carbon cycling is evident in the `juvenile effect', resulting from the assimilation of respired carbon dioxide and lower light levels below the canopy, and in the `anthropogenic effect' caused by increased industrial activity in the late-nineteenth and twentieth centuries. This study demonstrates that palaeoenvironmental information can be obtained from trees growing in aseasonal environments, where climatic conditions prevent the formation of well-defined annual rings.
Resumo:
For the first time we present a multi-proxy data set for the Russian Altai, consisting of Siberian larch tree-ring width (TRW), latewood density (MXD), δ13C and δ18O in cellulose chronologies obtained for the period 1779–2007 and cell wall thickness (CWT) for 1900–2008. All of these parameters agree well between each other in the high-frequency variability, while the low-frequency climate information shows systematic differences. The correlation analysis with temperature and precipitation data from the closest weather station and gridded data revealed that annual TRW, MXD, CWT, and δ13C data contain a strong summer temperature signal, while δ18O in cellulose represents a mixed summer and winter temperature and precipitation signal. The temperature and precipitation reconstructions from the Belukha ice core and Teletskoe lake sediments were used to investigate the correspondence of different independent proxies. Low frequency patterns in TRW and δ13C chronologies are consistent with temperature reconstructions from nearby Belukha ice core and Teletskoe lake sediments showing a pronounced warming trend in the last century. Their combination could be used for the regional temperature reconstruction. The long-term δ18O trend agrees with the precipitation reconstruction from the Teletskoe lake sediment indicating more humid conditions during the twentieth century. Therefore, these two proxies could be combined for the precipitation reconstruction.
Resumo:
BACKGROUND: In order to optimise the cost-effectiveness of active surveillance to substantiate freedom from disease, a new approach using targeted sampling of farms was developed and applied on the example of infectious bovine rhinotracheitis (IBR) and enzootic bovine leucosis (EBL) in Switzerland. Relevant risk factors (RF) for the introduction of IBR and EBL into Swiss cattle farms were identified and their relative risks defined based on literature review and expert opinions. A quantitative model based on the scenario tree method was subsequently used to calculate the required sample size of a targeted sampling approach (TS) for a given sensitivity. We compared the sample size with that of a stratified random sample (sRS) with regard to efficiency. RESULTS: The required sample sizes to substantiate disease freedom were 1,241 farms for IBR and 1,750 farms for EBL to detect 0.2% herd prevalence with 99% sensitivity. Using conventional sRS, the required sample sizes were 2,259 farms for IBR and 2,243 for EBL. Considering the additional administrative expenses required for the planning of TS, the risk-based approach was still more cost-effective than a sRS (40% reduction on the full survey costs for IBR and 8% for EBL) due to the considerable reduction in sample size. CONCLUSIONS: As the model depends on RF selected through literature review and was parameterised with values estimated by experts, it is subject to some degree of uncertainty. Nevertheless, this approach provides the veterinary authorities with a promising tool for future cost-effective sampling designs.
Resumo:
The development of a clinical decision tree based on knowledge about risks and reported outcomes of therapy is a necessity for successful planning and outcome of periodontal therapy. This requires a well-founded knowledge of the disease entity and a broad knowledge of how different risk conditions attribute to periodontitis. The infectious etiology, a complex immune response, and influence from a large number of co-factors are challenging conditions in clinical periodontal risk assessment. The difficult relationship between independent and dependent risk conditions paired with limited information on periodontitis prevalence adds to difficulties in periodontal risk assessment. The current information on periodontitis risk attributed to smoking habits, socio-economic conditions, general health and subjects' self-perception of health, is not comprehensive, and this contributes to limited success in periodontal risk assessment. New models for risk analysis have been advocated. Their utility for the estimation of periodontal risk assessment and prognosis should be tested. The present review addresses several of these issues associated with periodontal risk assessment.
Resumo:
Recent observations and model simulations have highlighted the sensitivity of the forest - tundra ecotone to climatic forcing. In contrast, paleoecological studies have not provided evidence of tree-line fluctuations in response to Holocene climatic changes in Alaska, suggesting that the forest - tundra boundary in certain areas may be relatively stable at multicentennial to millennial time scales. We conducted a multiproxy study of sediment cores from an Alaskan lake near the altitudinal limits of key boreal-forest species. Paleoecological data were compared with independent climatic reconstructions to assess ecosystem responses of the forest - tundra boundary to Little Ice Age (LIA) climatic. uctuations. Pollen, diatom, charcoal, macrofossil, and magnetic analyses provide the first continuous record of vegetation -. re - climate interactions at decadal to centennial time scales during the past 700 years from southern Alaska. Boreal-forest diebacks characterized by declines of Picea mariana, P. glauca, and tree Betula occurred during the LIA ( AD 1500 - 1800), whereas shrubs ( Alnus viridis, Betula glandulosa/nana) and herbaceous taxa (Epilobium, Aconitum) expanded. Marked increases in charcoal abundance and changes in magnetic properties suggest increases in. re importance and soil erosion during the same period. In addition, the conspicuous reduction or disappearance of certain aquatic ( e. g., Isoetes, Nuphar, Pediastrum) and wetland ( Sphagnum) plants and major shifts in diatom assemblages suggest pronounced lake-level. uctuations and rapid ecosystem reorganization in response to LIA climatic deterioration. Our results imply that temperature shifts of 1 - 2 degrees C, when accompanied by major changes in moisture balance, can greatly alter high-altitudinal terrestrial, wetland, and aquatic ecosystems, including conversion between boreal-forest tree line and tundra. The climatic and ecosystem variations in our study area appear to be coherent with changes in solar irradiance, suggesting that changes in solar activity contributed to the environmental instability of the past 700 years.
Resumo:
Lake sediment records from the Weerterbos region, in the southern Netherlands, were studied to reconstruct summer temperature and environmental changes during the Weichselian Lateglacial Interstadial. A sediment core obtained from a small lacustrine basin was analysed for multiple proxies, including lithological changes, oxygen isotopes of bulk carbonates, pollen and chironomids. It was found that the oxygen isotope record differed strongly from the other proxies. Based on a comparison with three additional lake sediment records from the same region, it emerged that the oxygen isotope records were strongly affected by local environmental conditions, impeding the distinction of a regional palaeoclimate signal. The chironomid-inferred July air temperature reconstruction produced inferred interstadial temperatures ranging between ∼15° and 18°C, largely consistent with previously published results from the northern part of the Netherlands. A temporary regressive phase in the pollen record, which can be tentatively correlated with the Older Dryas, preceded the expansion of birch woodland. Despite differences between the four pollen records from the Weerterbos region, a comparable regressive vegetation phase that was possibly the result of a shift to drier conditions could be discerned in all of the profiles. In addition, a temporary temperature decline of ∼1.5°C was inferred from the chironomid record during this regressive phase. The multi-proxy approach used here enabled a direct comparison of inferred changes in temperature, vegetation and environmental conditions at an individual site, while the multi-site approach provided insight into the factors influencing the pollen and isotope records from these small-scale depressions.