9 resultados para Ants.
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Repetitive DNA sequences present in the genome of Dicrocoelium dendriticum were identified by hybridization of genomic DNA that had been digested with different restriction enzymes with 32P-labeled genomic D. dendriticum DNA. DNA fragments containing repetitive sequences were isolated from PstI-digested D. dendriticum DNA and were subcloned into a plasmid vector. Plasmids containing repetitive sequences were identified by colony hybridization. One of these plasmids, designated Ddr-IV, was isolated and used as a probe in further studies. Ddr-IV is specific for D. dendriticum since it does not hybridize to DNA isolated from other trematodes. In addition, Ddr-IV was capable of detecting D. dendriticum metacercariae in ants (Formica cunicularia, F. rufibarbis, and Lasius sp.), which act as second intermediate hosts in the parasite's life cycle. Since metacercariae constitute the infectious stage of the parasite for grazing animals, Ddr-IV will provide a useful tool for epidemiology studies of dicrocoeliosis.
Resumo:
We study how species richness of arthropods relates to theories concerning net primary productivity, ambient energy, water-energy dynamics and spatial environmental heterogeneity. We use two datasets of arthropod richness with similar spatial extents (Scandinavia to Mediterranean), but contrasting spatial grain (local habitat and country). Samples of ground-dwelling spiders, beetles, bugs and ants were collected from 32 paired habitats at 16 locations across Europe. Species richness of these taxonomic groups was also determined for 25 European countries based on the Fauna Europaea database. We tested effects of net primary productivity (NPP), annual mean temperature (T), annual rainfall (R) and potential evapotranspiration of the coldest month (PETmin) on species richness and turnover. Spatial environmental heterogeneity within countries was considered by including the ranges of NPP, T, R and PETmin. At the local habitat grain, relationships between species richness and environmental variables differed strongly between taxa and trophic groups. However, species turnover across locations was strongly correlated with differences in T. At the country grain, species richness was significantly correlated with environmental variables from all four theories. In particular, species richness within countries increased strongly with spatial heterogeneity in T. The importance of spatial heterogeneity in T for both species turnover across locations and for species richness within countries suggests that the temperature niche is an important determinant of arthropod diversity. We suggest that, unless climatic heterogeneity is constant across sampling units, coarse-grained studies should always account for environmental heterogeneity as a predictor of arthropod species richness, just as studies with variable area of sampling units routinely consider area.
Resumo:
Venom glands are alreadypresent in theoldes t spider group, the Mesothelae. Theglands lie in the anterior portion of the cheliceral basal segment but are very small, and it is doubtful how much the venom contributes to the predatory success. In mygalomorph spiders, the well-developed venom glands are still in the basal segment of the chelicerae and produce powerful venom that is injected via the cheliceral fangs into a victim. In all other spiders (Araneomorphae), the venom glands have become much larger and reach into the prosoma where they can take up a considerable proportion of this body part. Only a few spiders have reduced their venom glands, either partially or completely (Uloboridae, Holarchaeidae and Symphytognathidae are usually mentioned) or modified them significantly (Scytodidae, see Suter and Stratton 2013). As well as using venom, spiders may also use their chelicerae to overwhelm an item of prey. It is primarily a question of size whether a spider chews up small arthropods without applying venom or if it injects venom first. Very small and/or defenceless arthropods are picked up and crashed with the chelicerae, while larger, dangerous or well-defended items are carefully approached and only attacked with venom injection. Some spiders specialize on prey groups, such as noctuid moths (several genera of bola spiders among Araneidae), web spiders (Mimetidae), ants (Zodarion species in Zodariidae, aphantochiline thomisids, several genera among Theridiidae, Salticidae, Clubionidae and Gnaphosidae) or termites (Ammoxenidae). However, these more or less monophagous species amount only to roughly 2 % of all known spider species, while 98 % are polyphagous. From these considerations, it follows that the majority of spider venoms are not tailored to any given invertebrate or insect group but are rather unspecialized to be effective over a broad spectrum of prey types that spiders naturally encounter.
Resumo:
The evolution of ants is marked by remarkable adaptations that allowed the development of very complex social systems. To identify how ant-specific adaptations are associated with patterns of molecular evolution, we searched for signs of positive selection on amino-acid changes in proteins. We identified 24 functional categories of genes which were enriched for positively selected genes in the ant lineage. We also reanalyzed genome-wide datasets in bees and flies with the same methodology, to check whether positive selection was specific to ants or also present in other insects. Notably, genes implicated in immunity were enriched for positively selected genes in the three lineages, ruling out the hypothesis that the evolution of hygienic behaviors in social insects caused a major relaxation of selective pressure on immune genes. Our scan also indicated that genes implicated in neurogenesis and olfaction started to undergo increased positive selection before the evolution of sociality in Hymenoptera. Finally, the comparison between these three lineages allowed us to pinpoint molecular evolution patterns that were specific to the ant lineage. In particular, there was ant-specific recurrent positive selection on genes with mitochondrial functions, suggesting that mitochondrial activity was improved during the evolution of this lineage. This might have been an important step toward the evolution of extreme lifespan that is a hallmark of ants.