40 resultados para Antigens, Protozoan

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyvalent Ig preparations, derived from the pooled plasma of thousands of healthy donors, contain a complex mix of both 'acquired' and natural antibodies directed against pathogens as well as foreign and self/auto antigens (Ag). Depending on their formulation, donor pool size, etc., liquid Ig preparations contain monomeric and dimeric IgG. The dimeric IgG fraction is thought to represent mainly idiotype-antiidiotype Ab pairs. Treatment of all IgG fractions at pH 4 effectively monomerizes the IgG dimers resulting in separated idiotype-antiidiotype Ab pairs and thus in a comparable F(ab')(2) binding site availability of the different IgG fractions. Previously, we identified an increased anti-self-reactivity within the monomerized dimer fraction. This study addressed if, among the different IgG fractions, an analogous preferential reactivity was evident in the response against different pathogen-derived protein and carbohydrate antigens. Therefore, we assessed the activity of total unseparated IgG, the monomeric and dimeric IgG fractions against antigenic structures of bacterial and viral antigens/virulence factors. All fractions showed similar reactivity to protein antigens except for exotoxin A of Pseudomonas aeruginosa, where the dimeric fraction, especially when monomerized, showed a marked increase in reactivity. This suggests that the production of antiidiotypic IgG antibodies contributes to controlling the immune response to certain categories of pathogens. In contrast, the monomeric IgG fractions showed increased reactivity towards pathogen-associated polysaccharides, classically regarded as T-independent antigens. Taken together, the differential reactivity of the IgG fractions seems to indicate a preferential segregation of antibody reactivities according to the nature of the antigen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The immune response of mice experimentally infected with Echinococcus multilocularis metacestodes becomes impaired so as to allow parasite survival and proliferation. Our study tackled the question on how different classes of E. multilocularis antigens (crude vesicular fluid (VF); purified proteinic rec-14-3-3; purified carbohydrate Em2(G11)) are involved in the maturation process of bone-marrow-derived dendritic cells (BMDCs) and subsequent exposure to lymph node (LN) cells. In our experiments, we used BMDCs cultivated from either naïve (control) or alveolar echinococcosis (AE)-infected C57BL/6 mice. We then tested surface markers (CD80, CD86, MHC class II) and cytokine expression levels (interleukin (IL)-10, IL-12p40 and tumour necrosis factor (TNF)-α) of non-stimulated BMDCs versus BMDCs stimulated with different Em-antigens or lipopolysaccharide (LPS). While LPS and rec-14-3-3-antigen were able to induce CD80, CD86 and (to a lower extent) MHC class II surface expression, Em2(G11) and, strikingly, also VF-antigen failed to do so. Similarly, LPS and rec-14-3-3 yielded elevated IL-12, TNF-α and IL-10 expression levels, while Em2(G11) and VF-antigen didn't. When naïve BMDCs were loaded with VF-antigen, they induced a strong non-specific proliferation of uncommitted LN cells. For both, BMDCs or LN cells, isolated from AE-infected mice, proliferation was abrogated. The most striking difference, revealed by comparing naïve with AE-BMDCs, was the complete inability of LPS-stimulated AE-BMDCs to activate lymphocytes from any LN cell group. Overall, the presenting activity of BMDCs from AE-infected mice seemed to trigger unresponsiveness in T cells, especially in the case of VF-antigen stimulation, thus contributing to the suppression of clonal expansion during the chronic phase of AE infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cupiennin 1a, a cytolytic peptide isolated from the venom of the spider Cupiennius salei, exhibits broad membranolytic activity towards bacteria, trypanosomes, and plasmodia, as well as human blood and cancer cells. In analysing the cytolytic activity of synthesised all-d- and all-l-cupiennin 1a towards pro- and eukaryotic cells, a stereospecific mode of membrane destruction could be excluded. The importance of negatively charged sialic acids on the outer leaflet of erythrocytes for the binding and haemolytic activity of l-cupiennin 1a was demonstrated. Reducing the overall negative charges of erythrocytes by partially removing their sialic acids or by protecting them with tri- or pentalysine results in reduced haemolytic activity of the peptide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increasing demand for novel anti-parasitic drugs due to resistance formation to well-established chemotherapeutically important compounds has increased the demands for a better understanding of the mechanism(s) of action of existing drugs and of drugs in development. While different approaches have been developed to identify the targets and thus mode of action of anti-parasitic compounds, it has become clear that many drugs act not only on one, but possibly several parasite molecules or even pathways. Ideally, these targets are not present in any cells of the host. In the case of apicomplexan parasites, the unique apicoplast, provides a suitable target for compounds binding to DNA or ribosomal RNA of prokaryotic origin. In the case of intracellular pathogens, a given drug might not only affect the pathogen by directly acting on parasite-associated targets, but also indirectly, by altering the host cell physiology. This in turn could affect the parasite development and lead to parasite death. In this review, we provide an overview of strategies for target identification, and present examples of selected drug targets, ranging from proteins to nucleic acids to intermediary metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recombinant NcPDI(recNcPDI), NcROP2(recNcROP2), and NcMAG1(recNcMAG1) were expressed in Escherichia coli and purified, and evaluated as potential vaccine candidates by employing the C57Bl/6 mouse cerebral infection model. Intraperitoneal application of these proteins suspended in saponin adjuvants lead to protection against disease in 50% and 70% of mice vaccinated with recNcMAG1 and recNcROP2, respectively, while only 20% of mice vaccinated with recNcPDI remained without clinical signs. In contrast, a 90% protection rate was achieved following intra-nasal vaccination with recNcPDI emulsified in cholera toxin. Only 1 mouse vaccinated intra-nasally with recNcMAG1 survived the challenge infection, and protection achieved with intra-nasally applied recNcROP2 was at 60%. Determination of cerebral parasite burdens by real-time PCR showed that these were significantly reduced only in recNcROP2-vaccinated animals (following intraperitoneal and intra-nasal application) and in recNcPDI-vaccinated mice (intra-nasal application only). Quantification of viable tachyzoites in brain tissue of intra-nasally vaccinated mice showed that immunization with recNcPDI resulted in significantly decreased numbers of live parasites. These data show that, besides the nature of the antigen, the protective effect of vaccination also depends largely on the route of antigen delivery. In the case of recNcPDI, the intra-nasal route provides a platform to generate a highly protective immune response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Production of native antigens for serodiagnosis of helminthic infections is laborious and hampered by batch-to-batch variation. For serodiagnosis of echinococcosis, especially cystic disease, most screening tests rely on crude or purified Echinococcus granulosus hydatid cyst fluid. To resolve limitations associated with native antigens in serological tests, the use of standardized and highly pure antigens produced by chemical synthesis offers considerable advantages, provided appropriate diagnostic sensitivity and specificity is achieved. METHODOLOGY/PRINCIPAL FINDINGS: Making use of the growing collection of genomic and proteomic data, we applied a set of bioinformatic selection criteria to a collection of protein sequences including conceptually translated nucleotide sequence data of two related tapeworms, Echinococcus multilocularis and Echinococcus granulosus. Our approach targeted alpha-helical coiled-coils and intrinsically unstructured regions of parasite proteins potentially exposed to the host immune system. From 6 proteins of E. multilocularis and 5 proteins of E. granulosus, 45 peptides between 24 and 30 amino acids in length were designed. These peptides were chemically synthesized, spotted on microarrays and screened for reactivity with sera from infected humans. Peptides reacting above the cut-off were validated in enzyme-linked immunosorbent assays (ELISA). Peptides identified failed to differentiate between E. multilocularis and E. granulosus infection. The peptide performing best reached 57% sensitivity and 94% specificity. This candidate derived from Echinococcus multilocularis antigen B8/1 and showed strong reactivity to sera from patients infected either with E. multilocularis or E. granulosus. CONCLUSIONS/SIGNIFICANCE: This study provides proof of principle for the discovery of diagnostically relevant peptides by bioinformatic selection complemented with screening on a high-throughput microarray platform. Our data showed that a single peptide cannot provide sufficient diagnostic sensitivity whereas pooling several peptide antigens improved sensitivity; thus combinations of several peptides may lead the way to new diagnostic tests that replace, or at least complement conventional immunodiagnosis of echinococcosis. Our strategy could prove useful for diagnostic developments in other pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent publications have shown that certain human leukocyte antigen (HLA) alleles are strongly associated with hypersensitivity to particular drugs. As HLA molecules are a critical element in T-cell stimulation, it is no surprise that particular HLA alleles have a direct functional role in the pathogenesis of drug hypersensitivity. In this context, a direct interaction of the relevant drug with HLA molecules as described by the p-i concept appears to be more relevant than presentation of hapten-modified peptides. In some HLA-associated drug hypersensitivity reactions, the presence of a risk allele is a necessary but incomplete factor for disease development. In carbamazepine and HLA-B*15:02, certain T-cell receptor (TCR) repertoires are required for immune activation. This additional requirement may be one of the 'missing links' in explaining why most individuals carrying this allele can tolerate the drug. In contrast, abacavir generates polyclonal T-cell response by interacting specifically with HLA-B*57:01 molecules. T cell stimulation may be due to presentation of abacavir or of altered peptides. While the presence of HLA-B*58:01 allele substantially increases the risk of allopurinol hypersensitivity, it is not an absolute requirement, suggesting that other factors also play an important role. In summary, drug hypersensitivity is the end result of a drug interaction with certain HLA molecules and TCRs, the sum of which determines whether the ensuing immune response is going to be harmful or not.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infections with enterotoxigenic Escherichia coli (ETEC) are a major cause of travelers' diarrhea worldwide. Colonization of the small intestine mucosa is dependent on specific colonization factor antigens (CFA) and coli surface (CS) antigens. CFA/1, CS3, and CS6 are the most prevalent fimbrial antigens found in clinical isolates. The goal of our study was to visualize the morphology of CS3 and CS6 fimbriae in wild-type and recombinant E. coli strains by means of transmission electron microscopy in conjunction with negative staining and immunolabeling. Corresponding ETEC genes were cloned into E. coli K12 strain DH10B. Expression of fimbriae was dependent on culture conditions and sample handling. Specific immunolabeling of fimbriae unequivocally demonstrated the presence of all types of surface antigens investigated. Negative staining was effective in revealing CS3 but not CS6. In addition, this technique clearly demonstrated differences in the morphology of genetically and immunologically identical CS3 surface antigens in wild-type and recombinant strains. This paper provides a basis for the assessment of recombinant vaccines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerous genetic variants of the Echinococcus antigen B (AgB) are encountered within a single metacestode. This could be a reflection of gene redundancy or the result of a somatic hypermutation process. We evaluate the complexity of the AgB multigene family by characterizing the upstream promoter regions of the 4 already known genes (EgAgB1-EgAgB4) and evaluating their redundancy in the genome of 3 Echinococcus species (E. granulosus, E. ortleppi and E. multilocularis) using PCR-based approaches. We have ascertained that the number of AgB gene copies is quite variable, both within and between species. The most repetitive gene seems to be AgB3, of which there are more than 110 copies in E. ortleppi. For E. granulosus, we have cloned and characterized 10 distinct upstream promoter regions of AgB3 from a single metacestode. Our sequences suggest that AgB1 and AgB3 are involved in gene conversion. These results are discussed in light of the role of gene redundancy and recombination in parasite evasion mechanisms of host immunity, which at present are known for protozoan organisms, but virtually unknown for multicellular parasites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The protozoan parasite Neospora caninum is one of the most important abortifacient organisms in cattle worldwide. The dog is known to act as definitive host although its potential role as infection source for bovines still remains unelucidated. The aim of the present study was to compile initial epidemiological data on the prevalence and incidence of N. caninum in Swiss dogs acting as definitive hosts. Thus, 249 Swiss dogs were investigated coproscopically in monthly intervals over a period of 1 year. A total of 3289 fecal samples was tested by the flotation technique. Among these, 202 were shown to contain Sarcocystis sp. (6.1%), 149 Cystoisospora sp. (=Isospora sp.; 4.5%) and 25 Hammondia/Neospora-like oocysts (HNlO) (0.7%). All but one sample containing HNlO were from different dogs; one dog shed HNlO at two subsequent time points. Calculation of the yearly incidence for HNlO resulted in the surprisingly high value of 9.2%. Farm dogs exhibited a higher incidence for HNlO than urban family dogs. Thirteen out of the 25 HNlO-samples showed sporulation after 5 days incubation at room temperature. HNlO were further differentiated by species-specific PCR. However, all HNlO-samples were negative for N. caninum, Hammondia heydorni and Toxoplasma gondii. One reason may be the low oocyst density found in most fecal samples, which did not permit us to carry out PCR under optimal conditions. Three out of the 25 HNlO-cases contained enough oocysts to allow further enrichment and purification by the flotation technique. Subsequently, twenty to fifty sporulated HNlO-oocysts were orally administered to Meriones unguiculatus. All gerbils were seronegative for N. caninum at 5 weeks p.i. A N. caninum-seroprevalence of 7.8% was determined by ELISA upon 1132 serum samples collected from dogs randomly selected by veterinarians among their clinical patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitazoxanide (2-acetolyloxy-N-(5-nitro 2-thiazolyl) benzamide; NTZ) represents the parent compound of a novel class of broad-spectrum anti-parasitic compounds named thiazolides. NTZ is active against a wide variety of intestinal and tissue-dwelling helminths, protozoa, enteric bacteria and a number of viruses infecting animals and humans. While potent, this poses a problem in practice, since this obvious non-selectivity can lead to undesired side effects in both humans and animals. In this study, we used real time PCR to determine the in vitro activities of 29 different thiazolides (NTZ-derivatives), which carry distinct modifications on both the thiazole- and the benzene moieties, against the tachyzoite stage of the intracellular protozoan Neospora caninum. The goal was to identify a highly active compound lacking the undesirable nitro group, which would have a more specific applicability, such as in food animals. By applying self-organizing molecular field analysis (SOMFA), these data were used to develop a predictive model for future drug design. SOMFA performs self-alignment of the molecules, and takes into account the steric and electrostatic properties, in order to determine 3D-quantitative structure activity relationship models. The best model was obtained by overlay of the thiazole moieties. Plotting of predicted versus experimentally determined activity produced an r2 value of 0.8052 and cross-validation using the "leave one out" methodology resulted in a q2 value of 0.7987. A master grid map showed that large steric groups at the R2 position, the nitrogen of the amide bond and position Y could greatly reduce activity, and the presence of large steric groups placed at positions X, R4 and surrounding the oxygen atom of the amide bond, may increase the activity of thiazolides against Neospora caninum tachyzoites. The model obtained here will be an important predictive tool for future development of this important class of drugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the tsetse fly, the protozoan parasite Trypanosoma congolense is covered by a dense layer of glycosylphosphatidylinositol (GPI)-anchored molecules. These include a protease-resistant surface molecule (PRS), which is expressed by procyclic forms early in infection, and a glutamic acid- and alanine-rich protein (GARP), which appears at later stages. Since neither of these surface antigens is expressed at intermediate stages, we investigated whether a GPI-anchored protein of 50 to 58 kDa, previously detected in procyclic culture forms, might constitute the coat of these parasites. We therefore partially purified the protein from T. congolense Kilifi procyclic forms, obtained an N-terminal amino acid sequence, and identified its gene. Detailed analyses showed that the mature protein consists almost exclusively of 13 heptapeptide repeats (EPGENGT). The protein is densely N glycosylated, with up to 13 high-mannose oligosaccharides ranging from Man(5)GlcNAc(2) to Man(9)GlcNAc(2) linked to the peptide repeats. The lipid moiety of the glycosylphosphatidylinositol is composed of sn-1-stearoyl-2-lyso-glycerol-3-HPO(4)-1-(2-O-acyl)-d-myo-inositol. Heavily glycosylated proteins with similar repeats were subsequently identified in T. congolense Savannah procyclic forms. Collectively, this group of proteins was named T. congolense procyclins to reflect their relationship to the EP and GPEET procyclins of T. brucei. Using an antiserum raised against the EPGENGT repeat, we show that T. congolense procyclins are expressed continuously in the fly midgut and thus form the surface coat of cells that are negative for both PRS and GARP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neospora caninum represents an important pathogen causing stillbirth and abortion in cattle and neuromuscular disease in dogs. Nitazoxanide (NTZ) and its deacetylated metabolite tizoxanide (TIZ) are nitro-thiazolyl-salicylamide drugs with a broad-spectrum anti-parasitic activity in vitro and in vivo. In order to generate compounds potentially applicable in food and breeding animals, the nitro group was removed, and the thiazole-moiety was modified by other functional groups. We had shown earlier that replacement of the nitro-group by a bromo-moiety did not notably affect in vitro efficacy of the drugs against N. caninum. In this study we report on the characterization of two bromo-derivatives, namely Rm4822 and its de-acetylated putative metabolite Rm4847 in relation to the nitro-compounds NTZ and TIZ. IC(50) values for proliferation inhibition were 4.23 and 4.14 microM for NTZ and TIZ, and 14.75 and 13.68 microM for Rm4822 and Rm4847, respectively. Complete inhibition (IC(99)) was achieved at 19.52 and 22.38 microM for NTZ and TIZ, and 18.21 and 17.66 microM for Rm4822 and Rm4847, respectively. However, in order to exert a true parasiticidal effect in vitro, continuous culture of infected fibroblasts in the presence of the bromo-thiazolide Rm4847 was required for a period of 3 days, while the nitro-compound TIZ required 5 days continuous drug exposure. Both thiazolides induced rapid egress of N. caninum tachyzoites from their host cells, and egress was inhibited by the cell membrane permeable Ca(2+)-chelator BAPTA-AM. Host cell entry by N. caninum tachyzoites was inhibited by Rm4847 but not by TIZ. Upon release from their host cells, TIZ-treated parasites remained associated with the fibroblast monolayer, re-invaded neighboring host cells and resumed proliferation in the absence of the drug. In contrast, Rm4847 inhibited host cell invasion and respective treated tachyzoites did not proliferate further. This demonstrated that bromo- and nitro-thiazolides exhibit differential effects against the intracellular protozoan N. caninum and bromo-thiazolides could represent a valuable alternative to the nitro-thiazolyl-salicylamide drugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fine particles (0.1-2.5 microm in diameter) may cause increased pulmonary morbidity and mortality. We demonstrate with a cell culture model of the human epithelial airway wall that dendritic cells extend processes between epithelial cells through the tight junctions to collect particles in the "luminal space" and to transport them through cytoplasmic processes between epithelial cells across the epithelium or to transmigrate through the epithelium to take up particles on the epithelial surface. Furthermore, dendritic cells interacted with particle-loaded macrophages on top of the epithelium and with other dendritic cells within or beneath the epithelium to take over particles. By comparing the cellular interplay of dendritic cells and macrophages across epithelial monolayers of different transepithelial electrical resistance, we found that more dendritic cells were involved in particle uptake in A549 cultures showing a low transepithelial electrical resistance compared with dendritic cells in16HBE14o cultures showing a high transepithelial electrical resistance 10 min (23.9% versus 9.5%) and 4 h (42.1% versus 14.6%) after particle exposition. In contrast, the macrophages in A549 co-cultures showed a significantly lower involvement in particle uptake compared with 16HBE14o co-cultures 10 min (12.8% versus 42.8%) and 4 h (57.4% versus 82.7%) after particle exposition. Hence we postulate that the epithelial integrity influences the particle uptake by dendritic cells, and that these two cell types collaborate as sentinels against foreign particulate antigen by building a transepithelial interacting cellular network.