103 resultados para Antigen-specific antibodies

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large numbers and functionally competent T cells are required to protect from diseases for which antibody-based vaccines have consistently failed (1), which is the case for many chronic viral infections and solid tumors. Therefore, therapeutic vaccines aim at the induction of strong antigen-specific T-cell responses. Novel adjuvants have considerably improved the capacity of synthetic vaccines to activate T cells, but more research is necessary to identify optimal compositions of potent vaccine formulations. Consequently, there is a great need to develop accurate methods for the efficient identification of antigen-specific T cells and the assessment of their functional characteristics directly ex vivo. In this regard, hundreds of clinical vaccination trials have been implemented during the last 15 years, and monitoring techniques become more and more standardized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interleukin 4 (IL-4) plays a central role in immune responses to parasites and allergens. IL-4 drives the differentiation of naive T cells into Th2 cells and regulates immunoglobulin class switching to IgE.Little is known about the role of IL-4 in canine allergies and parasite infections. Most of the information derives from measurement of IL-4 mRNA expression in dog tissues, but detection of IL-4 protein has been difficult so far, probably due to low sensitivity of available methods. Antibodies (Ab) specific for canine IL-4 are available from various sources, but these Ab have been produced against recombinant Escherichia coli-expressed canine IL-4 and there is only limited information on their reactivities with native canine IL-4. Therefore, in the present study, we tested six available canine IL-4-specific Ab for their reactivities with recombinant canine IL-4 expressed in E. coli (rec.IL-4) or in mammalian cells (mam.IL-4), and with supernatants from stimulated canine peripheral blood mononuclear cells (PBMCs) using several detection methods, including Western blotting, ELISA, cytokine bead assay, and intracellular IL-4 staining. Additionally, we tested a bovine IL-4-specific antibody that has been previously shown to cross-react with canine IL-4. All tested Ab except anti-bovine IL-4 reacted with rec.IL-4, and most of them reacted with mam.IL-4. However, only the cytokine bead assay was sensitive enough to allow the detection of IL-4 in supernatants of canine PBMCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytomegalovirus (CMV) reactivation in the retina of immunocompromized patients is a cause of significant morbidity as it can lead to blindness. The adaptive immune response is critical in controlling murine CMV (MCMV) infection in MCMV-susceptible mouse strains. CD8(+) T cells limit systemic viral replication in the acute phase of infection and are essential to contain latent virus. In this study, we provide the first evaluation of the kinetics of anti-viral T-cell responses after subretinal infection with MCMV. The acute response was characterized by a rapid expansion phase, with infiltration of CD8(+) T cells into the infected retina, followed by a contraction phase. MCMV-specific T cells displayed biphasic kinetics with a first peak at day 12 and contraction by day 18 followed by sustained recruitment of these cells into the retina at later time points post-infection. MCMV-specific CD8(+) T cells were also observed in the draining cervical lymph nodes and the spleen. Presentation of viral epitopes and activation of CD8(+) T cells was widespread and could be detected in the spleen and the draining lymph nodes, but not in the retina or iris. Moreover, after intraocular infection, antigen-specific cytotoxic activity was detectable and exhibited kinetics equivalent to those observed after intraperitoneal infection with the same viral dose. These data provide novel insights of how and where immune responses are initiated when viral antigen is present in the subretinal space.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To analyse the performance of a new M. tuberculosis-specific interferon gamma (IFNgamma) assay in patients with chronic inflammatory diseases who receive immunosuppressive drugs, including tumour necrosis factor alpha (TNFalpha) inhibitors. METHODS: Cellular immune responses to the M. tuberculosis-specific antigens ESAT-6, CFP-10, TB7.7 were prospectively studied in 142 consecutive patients treated for inflammatory rheumatic conditions. Results were compared with tuberculin skin tests (TSTs). Association of both tests with risk factors for latent M. tuberculosis infection (LTBI) and BCG vaccination were determined and the influence of TNFalpha inhibitors, corticosteroids, and disease modifying antirheumatic drugs (DMARDs) on antigen-specific and mitogen-induced IFNgamma secretion was analysed. RESULTS: 126/142 (89%) patients received immunosuppressive therapy. The IFNgamma assay was more closely associated with the presence of risk factors (odds ratio (OR) = 23.8 (95% CI 5.14 to 110) vs OR = 2.77 (1.22 to 6.27), respectively; p = 0.009), but less associated with BCG vaccination than the TST (OR = 0.47 (95% CI 0.15 to 1.47) vs OR = 2.44 (0.74 to (8.01), respectively; p = 0.025). Agreement between the IFNgamma assay and TST results was low (kappa = 0.17; 95% CI 0.02 to 0.32). The odds for a positive IFNgamma assay strongly increased with increasing prognostic relevance of LTBI risk factors. Neither corticosteroids nor conventional DMARDs significantly affected IFNgamma responses, but the odds for a positive IFNgamma assay were decreased in patients treated with TNFalpha inhibitors (OR = 0.21 (95% CI 0.07 to 0.63), respectively; p = 0.006). CONCLUSIONS: These results demonstrate that the performance of the M. tuberculosis antigen-specific IFNgamma ELISA is better than the classic TST for detection of LTBI in patients receiving immunosuppressive therapy for treatment of systemic autoimmune disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anti-helminth immunity involves CD4+ T cells, yet the precise effector mechanisms responsible for parasite killing or expulsion remain elusive. We now report an essential role for antibodies in mediating immunity against the enteric helminth Heligmosomoides polygyrus (Hp), a natural murine parasite that establishes chronic infection. Polyclonal IgG antibodies, present in naive mice and produced following Hp infection, functioned to limit egg production by adult parasites. Comparatively, affinity-matured parasite-specific IgG and IgA antibodies that developed only after multiple infections were required to prevent adult worm development. These data reveal complementary roles for polyclonal and affinity-matured parasite-specific antibodies in preventing enteric helminth infection by limiting parasite fecundity and providing immune protection against reinfection, respectively. We propose that parasite-induced polyclonal antibodies play a dual role, whereby the parasite is allowed to establish chronicity, while parasite load and spread are limited, likely reflecting the long coevolution of helminth parasites with their hosts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lymph node (LN) stromal cells (LNSCs) form the functional structure of LNs and play an important role in lymphocyte survival and the maintenance of immune tolerance. Despite their broad spectrum of function, little is known about LNSC responses during microbial infection. In this study, we demonstrate that LNSC subsets display distinct kinetics following vaccinia virus infection. In particular, compared with the expansion of other LNSC subsets and the total LN cell population, the expansion of fibroblastic reticular cells (FRCs) was delayed and sustained by noncirculating progenitor cells. Notably, newly generated FRCs were preferentially located in perivascular areas. Viral clearance in reactive LNs preceded the onset of FRC expansion, raising the possibility that viral infection in LNs may have a negative impact on the differentiation of FRCs. We also found that MHC class II expression was upregulated in all LNSC subsets until day 10 postinfection. Genetic ablation of radioresistant stromal cell-mediated Ag presentation resulted in slower contraction of Ag-specific CD4(+) T cells. We propose that activated LNSCs acquire enhanced Ag-presentation capacity, serving as an extrinsic brake system for CD4(+) T cell responses. Disrupted function and homeostasis of LNSCs may contribute to immune deregulation in the context of chronic viral infection, autoimmunity, and graft-versus-host disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Toll-like receptors recognize pathogen-associated molecular patterns of microbial origin, and ligand recognition results in the production of different immune mediators such as pro-inflammatory cytokines, interferon, reactive oxygen and nitrogen intermediates, and upregulation of costimmulatory molecules. As these receptors have a critical role in linking pathogen recognition to induction of inflammation and innate as well as adaptive immunity, there is tremendous interest in understanding how the tissue and cell-type expression of TLRs is regulated and its influence on the local innate immune response. While TLRs are well studied in humans and rodents, to date little is known about them in dogs. The purpose of this study was to develop canine specific antibodies against TLR2, 4, 5 and 9 that were used to measure relative expression of these TLRs in healthy and reactive canine mesenteric lymph nodes. All 8 rabbit sera (2 each for TLR2, 4, 5 and 9) were strongly positive in ELISA against the respective 2 peptides per TLR used for immunization. The purified antibodies selected specifically detected a protein band with an apparent size of approximately 70 kDa in lysates of canine PBMCs by Western blotting. Immunostaining was observed with purified antibodies against TLR4, 5 and 9, whereas for canine TLR2, staining was only observed with the unpurified antibodies. In the mesenteric lymph node of healthy dogs, the overall staining pattern was very similar for TLR4 and 5 with positive cells predominantly found in the internodular areas and lower part of the cortex. Compared to the TLR4 and 5, more cells stained positive for TLR9 especially in the lymphoid nodules. The reactive lymph nodes contained more TLR4 and 9 positive cells. Moreover, a shift of TLR-9 positive cells from the lymphoid follicles to the deep cortex and medullary cords was observed. Whereas TLR9 co-localized with CD79-positive areas, TLR4 and 5 antibodies stained cells primarily in the CD3-positive areas. All three TLR antibodies stained cells within the area that co-localized with lysozyme-positive cells. In conclusion, this study demonstrates that the antibodies generated against canine TLR 4, 5 and 9 identify the expression of these TLRs in formalin-fixed canine lymph nodes and demonstrate increased expression in reactive canine mesenteric lymph nodes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell death induction by apoptosis is an important process in the maintenance of tissue homeostasis as well as tissue destruction during various pathological processes. Consequently, detection of apoptotic cells in situ represents an important technique to assess the extent and impact of cell death in the respective tissue. While scoring of apoptosis by histological assessment of apoptotic cells is still a widely used method, it is likely biased by sensitivity problems and observed-based variations. The availability of caspase-mediated neo-epitope-specific antibodies offers new tools for the detection of apoptosis in situ. Here, we discuss the use of immunohistochemical detection of cleaved caspase 3 and lamin A for the assessment of apoptotic cells in paraffin-embedded liver tissue. Furthermore, we evaluate the effect of tissue pretreatment and antigen retrieval on the sensitivity of apoptosis detection, background staining and maintenance of tissue morphology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Maternal antibodies protect newborns whilst they are immunologically immature. This study shows that maternal antibodies can also shape the B cell repertoire of the offspring long after the maternal antibodies themselves become undetectable. V(H)DJ(H) gene-targeted (VI10) mice expressing a heavy chain specific for vesicular stomatitis virus (VSV) produce a 20-fold increased spontaneous titer of VSV-neutralizing antibodies. When transferred from mother to offspring, these antibodies prevented accumulation of Ag-specific transitional type 2 and marginal zone B cells with an activated phenotype and favored selection to the B cell follicles. This effect was B cell-intrinsic and lasted up to adulthood. The pups nursed by mothers producing specific antibodies developed higher endogenous antibody titers of this specificity which perpetuated the effects of specific B cell selection into the mature follicular compartment, presumably by blocking auto-Ag-dependent development of transitional type 2 B cells in the spleen. This repertoire change was functional, as following infection of adult mice with VSV, those pups that had received specific maternal antibodies as neonates had increased pre-immune titers and mounted strong early IgG neutralizing antibodies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The function of antigen-specific CD8+ T cells, which may protect against both infectious and malignant diseases, can be impaired by ligation of their inhibitory receptors, which include CTL-associated protein 4 (CTLA-4) and programmed cell death 1 (PD-1). Recently, B and T lymphocyte attenuator (BTLA) was identified as a novel inhibitory receptor with structural and functional similarities to CTLA-4 and PD-1. BTLA triggering leads to decreased antimicrobial and autoimmune T cell responses in mice, but its functions in humans are largely unknown. Here we have demonstrated that as human viral antigen-specific CD8+ T cells differentiated from naive to effector cells, their surface expression of BTLA was gradually downregulated. In marked contrast, human melanoma tumor antigen-specific effector CD8+ T cells persistently expressed high levels of BTLA in vivo and remained susceptible to functional inhibition by its ligand herpes virus entry mediator (HVEM). Such persistence of BTLA expression was also found in tumor antigen-specific CD8+ T cells from melanoma patients with spontaneous antitumor immune responses and after conventional peptide vaccination. Remarkably, addition of CpG oligodeoxynucleotides to the vaccine formulation led to progressive downregulation of BTLA in vivo and consequent resistance to BTLA-HVEM-mediated inhibition. Thus, BTLA activation inhibits the function of human CD8+ cancer-specific T cells, and appropriate immunotherapy may partially overcome this inhibition.