5 resultados para Anthropogenic influence

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A continuous and highly sensitive absorption method for detection of soluble phosphate in ice cores has been developed using a molybdate reagent and a 2m liquid waveg- uide (LWCC). The method is optimized to meet the low concentrations of phosphate in Greenland ice, it has a detection limit of around 0.1ppb and a depth resolution of approximately 2cm. The new method has been applied to obtain phosphate concen- trations from segments of two Northern Greenland ice cores: from a shallow firn core covering the most recent 120yr and from the recently obtained deep NEEM ice core in which sections from the late glacial period have been analysed. Phosphate con- centrations in 20th century ice are around 0.32ppb with no indication of anthropogenic influence in the most recent ice. In the glacial part of the NEEM ice core concentra- tions in the cold stadial periods are significantly higher, in the range of 6–24ppb, while interstadial ice concentrations are around 2ppb. In the shallow firn core, a strong cor- relation between concentrations of phosphate and insoluble dust suggests a similar deposition pattern for phosphate and dust. In the glacial ice, phosphate and dust also correlate quite strongly, however it is most likely that this correlation originates from the phosphate binding to dust during transport, with only a fraction coming directly from dust. Additionally a constant ratio between phosphate and potassium concentrations shows evidence of a possible biogenic land source.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We evaluated the effects of soil properties and climate on concentrations of parent and oxygenated polycyclic aromatic compounds (PAHs and OPAHs) and azaarenes (AZAs) in topsoil and subsoil at 20 sites along a 2100-km north (N)–south (S) transect in Argentina. The concentrations of Σ29PAHs, Σ15OPAHs and Σ4AZAs ranged 2.4–38 ng g− 1, 0.05–124 ng g− 1 and not detected to 0.97 ng g− 1, respectively. With decreasing anthropogenic influence from N to S, low molecular weight PAHs increasingly dominated. The octanol–water partitioning coefficients correlated significantly with the subsoil to topsoil concentration ratios of most compounds suggesting leaching as the main transport process. Organic C concentrations correlated significantly with those of many compounds typical for atmosphere–soil partitioning. Lighter OPAHs were mainly detected in the S suggesting biological sources and heavier OPAHs in the N suggesting a closer association with parent-PAHs. Decreasing alkyl-naphthalene/naphthalene and 9,10-anthraquinone (9,10-ANQ)/anthracene ratios from N to S indicated that 9,10-ANQ might have originated from low-temperature combustion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Past treelines can rarely be recorded by pollen percentages alone, but pollen concentration, pollen influx, and plant macrofossils (including stomata of conifers) are more reliable indicators. In addition, ancient forest soils above today's treeline may trace the maximum upper expansion of the forest since the last glaciation. Charcoal in such soil profiles may be radiocarbon dated. Our example from the Central Swiss Alps at the Alpe d'Essertse consists of a plant-macrofossil diagram and pollen diagrams of the pond Gouille Rion at 2343 m a.s.l. and a sequence of soil profiles from 1780 m to 2600 m a.s.l. The area around the pond was forested with LariJc decidua and Pinus cembra between 9500 and 3600 BP. After 4700 BP the forest became more open and Juniperus nana and Alnus viridis expanded (together with Picea abies in the subalpine forest). Between 1700 and 900 BP the Juniperus nana and Alnus viridis scrubs declined while meadows and pastures took over, so that the pond Gouille Rion was definitively above timber­ line. The highest Holocene treeline was at 2400 to 2450 m a.s.l. (i.e. 50 to 100 m higher than the uppermost single specimen of Pinus cembra today) between 9000 and 4700 BP, but it is not yet dated in more detail. The highest charcoal of Pinus cembra at 2380 m a.s.l. has a radiocarbon date of 6010 ± 70 BP. Around 6900 BP a strong climatic deterioration caused an opening of timberline forest. First indicators of anthropogenic influence occurred at 4700 BP, when the forest limit started to move down. The lowering of timberline after 4700 BP was probably due to combined effects of human and climatic impact.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Schwarzsee is located in the western Swiss Alps, in a region that has been affected by numerous landslides during the Holocene, as evidenced by geological surveys. Lacustrine sediments were cored to a depth of 13 m. The vegetation history of the lake's catchment was reconstructed and investigated to identify possible impacts on slope stability. The pollen analyses record development of forest cover during the middle and late Holocene, and provide strong evidence for regional anthropogenic influence such as forest clearing and agricultural activity. Vegetation change is characterized by continuous landscape denudation that begins at ca. 4300 cal. yrs BP, with five distinct pulses of increased deforestation, at 3650, 2700, 1500, 900, and 450 cal. yrs BP. Each pulse can be attributed to increased human impact, recorded by the appearance or increase of specific anthropogenic indicator plant taxa. These periods of intensified deforestation also appear to be correlated with increased landslide activity in the lake's catchment and increased turbidite frequency in the sediment record. Therefore, this study gives new evidence for a strong influence of vegetation changes on slope stability during the middle and late Holocene in the western Swiss Alps, and may be used as a case study for anthropogenically induced landslide activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aims to evaluate the direct effects of anthropogenic deforestation on simulated climate at two contrasting periods in the Holocene, ~6 and ~0.2 k BP in Europe. We apply We apply the Rossby Centre regional climate model RCA3, a regional climate model with 50 km spatial resolution, for both time periods, considering three alternative descriptions of the past vegetation: (i) potential natural vegetation (V) simulated by the dynamic vegetation model LPJ-GUESS, (ii) potential vegetation with anthropogenic land use (deforestation) from the HYDE3.1 (History Database of the Global Environment) scenario (V + H3.1), and (iii) potential vegetation with anthropogenic land use from the KK10 scenario (V + KK10). The climate model results show that the simulated effects of deforestation depend on both local/regional climate and vegetation characteristics. At ~6 k BP the extent of simulated deforestation in Europe is generally small, but there are areas where deforestation is large enough to produce significant differences in summer temperatures of 0.5–1 °C. At ~0.2 k BP, extensive deforestation, particularly according to the KK10 model, leads to significant temperature differences in large parts of Europe in both winter and summer. In winter, deforestation leads to lower temperatures because of the differences in albedo between forested and unforested areas, particularly in the snow-covered regions. In summer, deforestation leads to higher temperatures in central and eastern Europe because evapotranspiration from unforested areas is lower than from forests. Summer evaporation is already limited in the southernmost parts of Europe under potential vegetation conditions and, therefore, cannot become much lower. Accordingly, the albedo effect dominates in southern Europe also in summer, which implies that deforestation causes a decrease in temperatures. Differences in summer temperature due to deforestation range from −1 °C in south-western Europe to +1 °C in eastern Europe. The choice of anthropogenic land-cover scenario has a significant influence on the simulated climate, but uncertainties in palaeoclimate proxy data for the two time periods do not allow for a definitive discrimination among climate model results.