8 resultados para Anopheles albitarsis
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Vector control is the mainstay of malaria control programmes. Successful vector control profoundly relies on accurate information on the target mosquito populations in order to choose the most appropriate intervention for a given mosquito species and to monitor its impact. An impediment to identify mosquito species is the existence of morphologically identical sibling species that play different roles in the transmission of pathogens and parasites. Currently PCR diagnostics are used to distinguish between sibling species. PCR based methods are, however, expensive, time-consuming and their development requires a priori DNA sequence information. Here, we evaluated an inexpensive molecular proteomics approach for Anopheles species: matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). MALDI-TOF MS is a well developed protein profiling tool for the identification of microorganisms but so far has received little attention as a diagnostic tool in entomology. We measured MS spectra from specimens of 32 laboratory colonies and 2 field populations representing 12 Anopheles species including the A. gambiae species complex. An important step in the study was the advancement and implementation of a bioinformatics approach improving the resolution over previously applied cluster analysis. Borrowing tools for linear discriminant analysis from genomics, MALDI-TOF MS accurately identified taxonomically closely related mosquito species, including the separation between the M and S molecular forms of A. gambiae sensu stricto. The approach also classifies specimens from different laboratory colonies; hence proving also very promising for its use in colony authentication as part of quality assurance in laboratory studies. While being exceptionally accurate and robust, MALDI-TOF MS has several advantages over other typing methods, including simple sample preparation and short processing time. As the method does not require DNA sequence information, data can also be reviewed at any later stage for diagnostic or functional patterns without the need for re-designing and re-processing biological material.
Resumo:
BACKGROUND The evolution of insecticide resistance threatens current malaria control methods, which rely heavily on chemical insecticides. The magnitude of the threat will be determined by the phenotypic expression of resistance in those mosquitoes that can transmit malaria. These differ from the majority of the mosquito population in two main ways; they carry sporozoites (the infectious stage of the Plasmodium parasite) and they are relatively old, as they need to survive the development period of the malaria parasite. This study examines the effects of infection by Plasmodium berghei and of mosquito age on the sensitivity to DDT in a DDT-resistant strain of Anopheles gambiae. METHODS DDT-resistant Anopheles gambiae (ZANU) mosquitoes received a blood meal from either a mouse infected with Plasmodium berghei or an uninfected mouse. 10 and 19 days post blood meal the mosquitoes were exposed to 2%, 1% or 0% DDT using WHO test kits. 24 hrs after exposure, mortality and Plasmodium infection status of the mosquitoes were recorded. RESULTS Sensitivity to DDT increased with the mosquitoes' age and was higher in mosquitoes that had fed on Plasmodium-infected mice than in those that had not been exposed to the parasite. The latter effect was mainly due to the high sensitivity of mosquitoes that had fed on an infected mouse but were not themselves infected, while the sensitivity to DDT was only slightly higher in mosquitoes infected by Plasmodium than in those that had fed on an uninfected mouse. CONCLUSIONS The observed pattern indicates a cost of parasite-resistance. It suggests that, in addition to the detrimental effect of insecticide-resistance on control, the continued use of insecticides in a population of insecticide-resistant mosquitoes could select mosquitoes to be more susceptible to Plasmodium infection, thus further decreasing the efficacy of the control.
Resumo:
The protozoan parasite Plasmodium is transmitted by female Anopheles mosquitoes and undergoes obligatory development within a parasitophorous vacuole in hepatocytes before it is released into the bloodstream. The transition to the blood stage was previously shown to involve the packaging of exoerythrocytic merozoites into membrane-surrounded vesicles, called merosomes, which are delivered directly into liver sinusoids. However, it was unclear whether the membrane of these merosomes was derived from the parasite membrane, the parasitophorous vacuole membrane or the host cell membrane. This knowledge is required to determine how phagocytes will be directed against merosomes. Here, we fluorescently label the candidate membranes and use live cell imaging to show that the merosome membrane derives from the host cell membrane. We also demonstrate that proteins in the host cell membrane are lost during merozoite liberation from the parasitophorous vacuole. Immediately after the breakdown of the parasitophorous vacuole membrane, the host cell mitochondria begin to degenerate and protein biosynthesis arrests. The intact host cell plasma membrane surrounding merosomes allows Plasmodium to mask itself from the host immune system and bypass the numerous Kupffer cells on its way into the bloodstream. This represents an effective strategy for evading host defenses before establishing a blood stage infection.
Resumo:
Plasmodium parasites are transmitted by Anopheles mosquitoes to the mammalian host and actively infect hepatocytes after passive transport in the bloodstream to the liver. In their target host hepatocyte, parasites reside within a parasitophorous vacuole (PV). In the present study it was shown that the parasitophorous vacuole membrane (PVM) can be targeted by autophagy marker proteins LC3, ubiquitin, and SQSTM1/p62 as well as by lysosomes in a process resembling selective autophagy. The dynamics of autophagy marker proteins in individual Plasmodium berghei-infected hepatocytes were followed by live imaging throughout the entire development of the parasite in the liver. Although the host cell very efficiently recognized the invading parasite in its vacuole, the majority of parasites survived this initial attack. Successful parasite development correlated with the gradual loss of all analyzed autophagy marker proteins and associated lysosomes from the PVM. However, other autophagic events like nonselective canonical autophagy in the host cell continued. This was indicated as LC3, although not labeling the PVM anymore, still localized to autophagosomes in the infected host cell. It appears that growing parasites even benefit from this form of nonselective host cell autophagy as an additional source of nutrients, as in host cells deficient for autophagy, parasite growth was retarded and could partly be rescued by the supply of additional amino acid in the medium. Importantly, mouse infections with P. berghei sporozoites confirmed LC3 dynamics, the positive effect of autophagy activation on parasite growth, and negative effects upon autophagy inhibition.
Resumo:
Amawaka ([ɑmɨ̃ˈwɐkɑ]) is a highly endangered and underdocumented tonal language of the Headwaters (Fleck 2011) subgroup of the Panoan family in the Southwest Amazon Basin, spoken by approximately 200 people. Undocumented phonetic and phonological phenomena of Amawaka include its tonal structure, both in terms of surface realizations and the patterns underlying these realizations. Original audiovisual data from the author’s fieldwork in various Amawaka communities at the Peru-Brazil border will illuminate the as-yet obscure tonal systematicity of the language. Unlike other elements, monosyllabic bimoraic phonological nominal words with long vowels display variation in their surface realization. All the words with the open back unrounded /ɑ/, like /ˈkɑ̀:/ (patarashca, a traditional Amazonian dish), /ˈnɑ̀:/ “mestizo” etc. [with the exception of /ˈtɑ:/ “reed”, which surfaces with either a H or L tone] bear a low tone in isolation. This realization contrasts with all the encountered nominal monosyllables with vowels from the close and close-mid front and central spectrum /i, ɘ, ɨ, ɨ̃/, which clearly surface as high tone words in isolation, for example /ˈmɨ̃́:/ (a clay-lick for animals), /ˈwí:/ “Anopheles, spp. mosquito”. Monosyllables with close-mid back rounded /o/ have a less restrictive pitch that varies among speakers from low to high realizations, and sometimes even across the speech tokens from an individual speaker, e.g. /wó:/ or /wō:/ “hair”, /ɧō:/ or /ɧò:/ (a type of tarantula). Phrasal tonal phonology is more complex, when these three kinds of monosyllables appear in larger noun phrases. Some retain the same surface tones as their isolation form, while others seem to vary freely in their surface realization, e.g. /ˈtɘ́:.nɑ̀:/ or /ˈtɘ́:.nɑ́:/ ‘one mestizo’. Yet other monosyllables, e.g. /mɑ̀:/, exhibit a falling tone when preceded by a H syllable, suggesting probably latent tone sandhi phenomena, e.g /ˈtɘ́:.mɑ̂:/ (one clay-lick for parrots). In disyllabic, trisyllabic and quadrisyllabic nouns, tonal and stress patterns generally seem to be more consistent and tend to be retained both in isolation and in larger intonational phrases. Disyllabic nouns, for instance, surface as L-H or L-L when a glottal stop is in coda position. The association of L with a glottal stop is a feature that occurs in other Panoan languages as well, like Capanahua (Loos 1969), and more generally it is an areal feature, found in other parts of Amazonia (Hyman 2010). So, tone has significant interactions with the glottal stop and glottalization, which generally co-occurs with L. The data above suggest that the underlying tonal system of Amawaka is much more complex than the privative one-tone analysis (/H/ vs. Ø, i.e. lack of tone) that was proposed by Russell and Russell (1959). Evidence from field data suggests either an equipollent (Hyman 2010) two-tone opposition between /H/ and /L/, or a hybrid system, with both equipollent and privative features; that is, /H/ vs. /L/ vs. either Ø or /M/. This first systematic description of Amawaka tone, in conjunction with ongoing research, is poised to address broader questions concerning interrelationships between surface/underlying tone and other suprasegmental features, such as nasality, metrical stress, and intonation. References Fleck, David W. 2011. Panoan languages and linguistics. In Javier Ruedas and David W. Fleck (Eds.), Panoan Histories and Interethnic Identities, To appear. Hyman, Larry. 2010. Amazonia and the typology of tone systems. Presented at the conference Amazonicas III: The structure of the Amazonian languages. Bogotá. Loos, Eugene E. 1969. The phonology of Capanahua and its grammatical basis. Norman: SIL and U. Oklahoma. Russell, Robert & Dolores. 1959. Syntactotonemics in Amahuaca (Pano). Série Lingüistica Especial, 128-167. Publicaçoes do Museu Nacional, Rio de Janeiro, Brasil.
Resumo:
Amawaka ([ɑmɨ̃ˈwɐkɑ]) is a highly endangered and underdocumented tonal language of the Headwaters (Fleck 2011) subgroup of the Panoan family in the Southwest Amazon Basin, spoken by approximately 200 people. Undocumented phonetic and phonological phenomena of Amawaka include its tonal structure, both in terms of surface realizations and the patterns underlying these realizations. Original audiovisual data from the author’s fieldwork in various Amawaka communities at the Peru-Brazil border will illuminate the as-yet obscure tonal systematicity of the language. Unlike other elements, monosyllabic bimoraic phonological nominal words with long vowels display variation in their surface realization. All the words with the open back unrounded /ɑ/, like /ˈkɑ̀:/ (a traditional Amazonian dish), /ˈnɑ̀:/ “mestizo” etc. [with the exception of /ˈtɑ:/ “reed”, which surfaces with either a H or L tone] bear a low tone in isolation. This realization contrasts with all the encountered nominal monosyllables with vowels from the close and close-mid front and central spectrum /i, ɘ, ɨ, ɨ̃/, which clearly surface as high tone words in isolation, for example /ˈmɨ̃́:/ (a clay-lick for animals), /ˈwí:/ “Anopheles, spp. mosquito”. Monosyllables with close-mid back rounded /o/ have a less restrictive pitch that varies among speakers from low to high realizations, and sometimes even across the speech tokens from an individual speaker, e.g. /wó:/ or /wō:/ “hair”, /ɧō:/ or /ɧò:/ (a type of tarantula). Phrasal tonal phonology is more complex, when these three kinds of monosyllables appear in larger noun phrases. Some retain the same surface tones as their isolation form, while others seem to vary freely in their surface realization, e.g. /ˈtɘ́:.nɑ̀:/ or /ˈtɘ́:.nɑ́:/ ‘one mestizo’. Yet other monosyllables, e.g. /mɑ̀:/, exhibit a falling tone when preceded by a H syllable, suggesting probably latent tone sandhi phenomena, e.g /ˈtɘ́:.mɑ̂:/ (one clay-lick for parrots). In disyllabic, trisyllabic and quadrisyllabic nouns, tonal and stress patterns generally seem to be more consistent and tend to be retained both in isolation and in larger intonational phrases. Disyllabic nouns, for instance, surface as L-H or L-L when a glottal stop is in coda position. The association of L with a glottal stop is a feature that occurs in other Panoan languages as well, like Capanahua (Loos 1969), and more generally it is an areal feature, found in other parts of Amazonia (Hyman 2010). So, tone has significant interactions with the glottal stop and glottalization, which generally co-occurs with L. The data above suggest that the underlying tonal system of Amawaka is much more complex than the privative one-tone analysis (/H/ vs. Ø, i.e. lack of tone) that was proposed by Russell and Russell (1959). Evidence from field data suggests either an equipollent (Hyman 2010) two-tone opposition between /H/ and /L/, or a hybrid system, with both equipollent and privative features; that is, /H/ vs. /L/ vs. either Ø or /M/. This first systematic description of Amawaka tone, in conjunction with ongoing research, is poised to address broader questions concerning interrelationships between surface/underlying tone and other suprasegmental features, such as nasality, metrical stress, and intonation. References Fleck, David W. 2011. Panoan languages and linguistics. In Javier Ruedas and David W. Fleck (Eds.), Panoan Histories and Interethnic Identities, To appear. Hyman, Larry. 2010. Amazonia and the typology of tone systems. Presented at the conference Amazonicas III: The structure of the Amazonian languages. Bogotá. Loos, Eugene E. 1969. The phonology of Capanahua and its grammatical basis. Norman: SIL and U. Oklahoma. Russell, Robert & Dolores. 1959. Syntactotonemics in Amahuaca (Pano). Série Lingüistica Especial, 128-167. Publicaçoes do Museu Nacional, Rio de Janeiro, Brasil.
Resumo:
The generation of rodent Plasmodium strains expressing fluorescent proteins in all life cycle stages has had a big impact on malaria research. With this tool in hand, for the first time it was possible to follow in real time by in vivo microscopy the infection route of Plasmodium sporozoites transmitted to the mammalian host by Anopheles mosquitoes. Recently, this work has been extended to the analysis of both hepatocyte infection by Plasmodium sporozoites, as well as liver merozoite transport into blood vessels. The stunning results of these studies have considerably changed our understanding of hepatocyte invasion and parasite liberation. Here, we describe the most important findings of the last years and in addition, we elaborate on the molecular events during the intracellular development of Plasmodium exoerythrocytic forms that give rise to erythrocyte infecting merozoites.
Resumo:
Plasmodium parasites, the causative agents of malaria, first invade and develop within hepatocytes before infecting red blood cells and causing symptomatic disease. Because of the low infection rates in vitro and in vivo, the liver stage of Plasmodium infection is not very amenable to biochemical assays, but the large size of the parasite at this stage in comparison with Plasmodium blood stages makes it accessible to microscopic analysis. A variety of imaging techniques has been used to this aim, ranging from electron microscopy to widefield epifluorescence and laser scanning confocal microscopy. High-speed live video microscopy of fluorescent parasites in particular has radically changed our view on key events in Plasmodium liver-stage development. This includes the fate of motile sporozoites inoculated by Anopheles mosquitoes as well as the transport of merozoites within merosomes from the liver tissue into the blood vessel. It is safe to predict that in the near future the application of the latest microscopy techniques in Plasmodium research will bring important insights and allow us spectacular views of parasites during their development in the liver.