44 resultados para Anion pairing

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Postmenopausal hormone therapy (HT) increases local estrogen formation in breast tissue. The enzymatic substrates depend on transmembrane anion transporting polypeptides (OATPs) to reach intracellular enzymes. The aim of this study was to investigate the effect of testosterone (T) on the expression of OATP-1A2, OATP-2B1, and OATP-3A1 in malignant (MCF-7, BT-474) and non-malignant (HBL-100) breast cells in vitro.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three fundamental types of suppressor additives for copper electroplating could be identified by means of potential Transient measurements. These suppressor additives differ in their synergistic and antagonistic interplay with anions that are chemisorbed on the metallic copper surface during electrodeposition. In addition these suppressor chemistries reveal different barrier properties with respect to cupric ions and plating additives (Cl, SPS). While the type-I suppressor selectively forms efficient barriers for copper inter-diffusion on chloride-terminated electrode surfaces we identified a type-II suppressor that interacts non-selectively with any kind of anions chemisorbed on copper (chloride, sulfate, sulfonate). Type-I suppressors are vital for the superconformal copper growth mode in Damascene processing and show an antagonistic interaction with SPS (Bis-Sodium-Sulfopropyl-Disulfide) which involves the deactivation of this suppressor chemistry. This suppressor deactivation is rationalized in terms of compositional changes in the layer of the chemisorbed anions due to the competition of chloride and MPS (Mercaptopropane Sulfonic Acid) for adsorption sites on the metallic copper surface. MPS is the product of the dissociative SPS adsorption within the preexisting chloride matrix on the copper surface. The non-selectivity in the adsorption behavior of the type-II suppressor is rationalized in terms of anion/cation pairing effects of the poly-cationic suppressor and the anion-modified copper substrate. Atomic-scale insights into the competitive Cl/MPS adsorption are gained from in situ STM (Scanning Tunneling Microscopy) using single crystalline copper surfaces as model substrates. Type-III suppressors are a third class of suppressors. In case of type-land type-II suppressor chemistries the resulting steady-state deposition conditions are completely independent on the particular succession of additive adsorption. In contrast to that a strong dependence of the suppressing capabilities on the sequence of additive adsorption ("first comes, first serves" principle) is observed for the type-IIIsuppressor. This behavior:is explained by a suppressor barrier that impedes not only the copper inter-diffusion but also the transport of other additives (e.g. SPS) to the copper surface. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis of a caged RNA phosphoramidite building block containing the oxidatively damaged base 5-hydroxycytidine (5-HOrC) has been accomplished. To determine the effect of this highly mutagenic lesion on complementary base recognition and coding properties, this building block was incorporated into a 12-mer oligoribonucleotide for Tm and CD measurements and a 31-mer template strand for primer extension experiments with HIV-, AMV- and MMLV-reverse transcriptase (RT). In UV-melting experiments, we find an unusual biphasic transition with two distinct Tm's when 5-HOrC is paired against a DNA or RNA complement with the base guanine in opposing position. The higher Tm closely matches that of a C-G base pair while the lower is close to that of a C-A mismatch. In single nucleotide extension reactions, we find substantial misincorporation of dAMP and to a lesser extent dTMP, with dAMP almost equaling that of the parent dGMP in the case of HIV-RT. A working hypothesis for the biphasic melting transition does not invoke tautomeric variability of 5-HOrC but rather local structural perturbations of the base pair at low temperature induced by interactions of the 5-HO group with the phosphate backbone. The properties of this RNA damage is discussed in the context of its putative biological function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human HeLa cells transfected with mouse connexin45 were used to explore the experimental conditions suitable to measure currents carried by gap junction hemichannels. Experiments were performed with a voltage-clamp technique and whole-cell recording. Lowering [Ca(2+)](o) from 2 mM to 20 nM evoked an extra current, I (m), putatively carried by Cx45 hemichannels. However, the variability of I (m) (size, voltage sensitivity, kinetics) suggested the involvement of other channels. The finding that growth medium in the incubator increased the osmolarity with time implied that volume-regulated anion channels (VRAC) may participate. This assumption was reinforced by the following observations. On the one hand, keeping [Ca(2+)](o) normal while the osmolarity of the extracellular solution was reduced from 310 to 290 mOsm yielded a current characteristic of VRAC; I (VRAC) activated/deactivated at negative/positive voltage, giving rise to the conductance functions g (VRAC,inst)=f(V (m)) (inst: instantaneous; V (m): membrane potential) and g (VRAC,ss)=f(V (m)) (ss: steady state). Moreover, it was reversibly inhibited by mibefradil, a Cl(-)channel blocker (binding constant K (d)=38 microM, Hill coefficient n=12), but not by the gap junction channel blocker 18alpha-glycyrrhetinic acid. On the other hand, minimizing the osmotic imbalance while [Ca(2+)](o) was reduced led to a current typical for Cx45 hemichannels; I (hc) activated/deactivated at positive/negative voltage. Furthermore, it was reversibly inhibited by 18alpha-glycyrrhetinic acid or palmitoleic acid, but not by mibefradil. Computations based on g (VRAC,ss)=f(V (m)) and g (hc,ss)=f(V (m)) indicated that the concomitant operation of both currents results in a bell-shaped conductance-voltage relationship. The functional implications of the data presented are discussed. Conceivably, VRAC and hemichannels are involved in a common signaling pathway.