73 resultados para Animal study

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Premature collagen membrane degradation may compromise the outcome of osseous regenerative procedures. Tetracyclines (TTCs) inhibit the catalytic activities of human metalloproteinases. Preprocedural immersion of collagen membranes in TTC and systemic administration of TTC may be possible alternatives to reduce the biodegradation of native collagen membranes. AIM: To evaluate the in vivo degradation of collagen membranes treated by combined TTC immersion and systemic administration. MATERIALS AND METHODS: Seventy-eight bilayered porcine collagen membrane disks were divided into three groups and were immersed in 0, 50, or 100 mg/mL TTC solution. Three disks, one of each of the three groups, were implanted on the calvaria of each of 26 Wistar rats. Thirteen (study group) were administered with systemic TTC (10 mg/kg), while the remaining 13 received saline injections (control group). Calvarial tissues were retrieved after 3 weeks, and histological sections were analyzed by image analysis software. RESULTS: Percentage of remaining collagen area within nonimpregnated membranes was 52.26 ± 20.67% in the study group, and 32.74 ± 13.81% in the control group. Immersion of membranes in 100 mg/mL TTC increased the amount of residual collagen to 63.46 ± 18.19% and 42.82 ± 12.99% (study and control groups, respectively). Immersion in 50 mg/mL TTC yielded maximal residual collagen values: 80.75 ± 14.86% and 59.15 ± 8.01% (study and control groups, respectively). Differences between the TTC concentrations, and between the control and the study groups were statistically significant. CONCLUSIONS: Immersion of collagen membranes in TTC solution prior to their implantation and systemic administration of TTC significantly decreased the membranes' degradation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to investigate if radial extracorporeal shock wave therapy (rESWT) induces new bone formation and to study the time course of ESWT-induced osteogenesis. A total of 4000 impulses of radial shock waves (0.16 mJ/mm²) were applied to one hind leg of 13 New Zealand white rabbits with the contralateral side used for control. Treatment was repeated after 7 days. Fluorochrome sequence labeling of new bone formation was performed by subcutaneous injection of tetracycline, calcein green, alizarin red and calcein blue. Animals were sacrificed 2 weeks (n = 4), 4 weeks (n = 4) and 6 weeks (n = 5) after the first rESWT and bone sections were analyzed by fluorescence microscopy. Deposits of fluorochromes were classified and analyzed for significance with the Fisher exact test. rESWT significantly increased new bone formation at all time points over the 6-week study period. Intensity of ossification reached a peak after 4 weeks and declined at the end of the study. New bone formation was significantly higher and persisted longer at the ventral cortex, which was located in the direction to the shock wave device, compared with the dorsal cortex, emphasizing the dose-dependent process of ESWT-induced osteogenesis. No traumata, such as hemorrhage, periosteal detachment or microfractures, were observed by histologic and radiologic assessment. This is the first study demonstrating low-energy radial shock waves to induce new bone formation in vivo. Based on our results, repetition of ESWT in 6-week intervals can be recommended. Application to bone regions at increased fracture risk (e.g., in osteoporosis) are possible clinical indications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Percutaneous vertebroplasty, comprising of the injection of polymethylmethacrylate (PMMA) into vertebral bodies, is an efficient procedure to stabilize osteoporotic compression fractures as well as other weakening lesions. Besides fat embolism, cement leakage is considered to be one of the major and most severe complications during percutaneous vertebroplasty. The viscosity of the PMMA during injection plays a key role in this context. It was shown in vitro that the best way to lower the risk of cement leakage is to inject the cement at higher viscosity, which is requires high injection forces. Injection forces can be reduced by applying a newly developed lavage technique as it was shown in vitro using human cadaver vertebrae. The purpose of this study was to prove the in vitro results in an in vivo model. The investigation was incorporated in an animal study that was performed to evaluate the cardiovascular reaction on cement augmentation using the lavage technique. Injection forces were measured with instrumentation for 1 cc syringes, additionally acquiring plunger displacement. Averaged injection forces measured, ranged from 12 to 130 N and from 28 to 140 N for the lavage group and the control group, respectively. Normalized injection forces (by viscosity and injection speed) showed a trend to be lower for the lavage group in comparison to the control group (P = 0.073). In conclusion, the clinical relevance on the investigated lavage technique concerning lowering injection forces was only shown by trend in the performed animal study. However, it might well be that the effect is more pronounced for osteoporotic vertebral bodies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Abstract PURPOSE: Reliable animal models are essential to evaluate future therapeutic options like cell-based therapies for external anal sphincter insufficiency. The goal of our study was to describe the most reliable model for external sphincter muscle insufficiency by comparing three different methods to create sphincter muscle damage. METHODS: In an experimental animal study, female Lewis rats (200-250 g) were randomly assigned to three treatment groups (n = 5, each group). The external sphincter muscle was weakened in the left dorsal quadrant by microsurgical excision, cryosurgery, or electrocoagulation by diathermy. Functional evaluation included in vivo measurements of resting pressure, spontaneous muscle contraction, and contraction in response to electrical stimulation of the afferent nerve at baseline and at 2, 4, and 6 weeks after sphincter injury. Masson's trichrome staining and immunofluorescence for skeletal muscle markers was performed for morphological analysis. RESULTS: Peak contraction after electrical stimulation was significantly decreased after sphincter injury in all groups. Contraction forces recovered partially after cryosurgery and electrocoagulation but not after microsurgical excision. Morphological analysis revealed an incomplete destruction of the external sphincter muscle in the cryosurgery and electrocoagulation groups compared to the microsurgery group. CONCLUSIONS: For the first time, three different models of external sphincter muscle insufficiency were directly compared. The animal model using microsurgical sphincter destruction offers the highest level of consistency regarding tissue damage and sphincter insufficiency, and therefore represents the most reliable model to evaluate future therapeutic options. In addition, this study represents a novel model to specifically test the external sphincter muscle function.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mechanical thrombectomy in ischemic stroke is of increasing interest as it is a promising strategy for fast and efficient recanalization. Several thrombectomy devices have been introduced to the armentarium of mechanical thrombectomy. Currently, new devices are under development and are continuously added to the neurointerventional tool box. Each device advocated so far has a different design and mechanical properties in terms of thrombus-device interaction. Therefore, a systematic evaluation under standardized conditions in vivo of these new devices is needed. The purpose of this study was to evaluate the efficiency, thrombus-device interaction, and potential complications of the novel Phenox CRC for distal mechanical thrombectomy in vivo. The device was evaluated in an established animal model in the swine. Recanalization rate, thromboembolic events, vasospasm, and complications were assessed. Radiopaque thrombi (2 cm length) were used for the visualization of thrombus-device interaction during retrieval. The Phenox CRC (4 mm diameter) was assessed in 15 vessel occlusions. For every occlusion a maximum of 3 retrieval attempts were performed. Complete recanalization (TICI 3/TIMI 3) was achieved in 86.7% of vessel occlusions. In 66.7% (10/15), the first retrieval attempt was successful, and in 20% (3/15), the second attempt led to complete recanalization of the parent artery. In 2 cases (13.3%) thrombus retrieval was not successful (TICI 0/TIMI 0). In 1 case (6.7%) a minor embolic event occurred in a small side branch. No distal thromboembolic event was observed during the study. Thrombus-device interaction illustrated the entrapment of the thrombus by the microfilaments and the proximal cage of the device. No significant thrombus compression was observed. No vessel perforation, dissection, or fracture of the device occurred. In this small animal study, the Phenox CRC was a safe and effective device for mechanical thrombectomy. The unique design with a combination of microfilaments and proximal cage reduces thrombus compression with a consequently high recanalization and low complication rate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To date, transapical aortic valve implantation has required a balloon-expandable stented valve prosthesis. More recently, a novel self-expanding sutureless stented bovine pericardial prosthesis has been developed which allows rapid aortic valve replacement via an open transaortic approach in humans. The aim of this animal study was to develop a reliable protocol to facilitate the transapical implantation of this self-expanding valve in a porcine model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vasopressors, such as norepinephrine, are frequently used to treat perioperative hypotension. Increasing perfusion pressure with norepinephrine may increase blood flow in regions at risk. However, the resulting vasoconstriction could deteriorate microcirculatory blood flow in the intestinal tract and kidneys. This animal study was designed to investigate the effects of treating perioperative hypotension with norepinephrine during laparotomy with low fluid volume replacement.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of an operating microscope in animal liver surgery has made it possible to obtain new experimental models. The goal of this prospective animal study is to present our experience with dogfish portocaval microanastomoses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE: The aim of this study was to assess the microcirculatory and metabolic consequences of reduced mesenteric blood flow. DESIGN: Prospective, controlled animal study. SETTING: The surgical research unit of a university hospital. SUBJECTS: A total of 13 anesthetized and mechanically ventilated pigs. INTERVENTIONS: Pigs were subjected to stepwise mesenteric blood flow reduction (15% in each step, n = 8) or served as controls (n = 5). Superior mesenteric arterial blood flow was measured with ultrasonic transit time flowmetry, and mucosal and muscularis microcirculatory perfusion in the small bowel were each measured with three laser Doppler flow probes. Small-bowel intramucosal Pco2 was measured by tonometry, and glucose, lactate (L), and pyruvate (P) were measured by microdialysis. MEASUREMENTS AND MAIN RESULTS: In control animals, superior mesenteric arterial blood flow, mucosal microcirculatory blood flow, intramucosal Pco2, and the lactate/pyruvate ratio remained unchanged. In both groups, mucosal blood flow was better preserved than muscularis blood flow. During stepwise mesenteric blood flow reduction, heterogeneous microcirculatory blood flow remained a prominent feature (coefficient of variation, approximately 45%). A 30% flow reduction from baseline was associated with a decrease in microdialysis glucose concentration from 2.37 (2.10-2.70) mmol/L to 0.57 (0.22-1.60) mmol/L (p < .05). After 75% flow reduction, the microdialysis lactate/pyruvate ratio increased from 8.6 (8.0-14.1) to 27.6 (15.5-37.4, p < .05), and arterial-intramucosal Pco2 gradients increased from 1.3 (0.4-3.5) kPa to 10.8 (8.0-16.0) kPa (p < .05). CONCLUSIONS: Blood flow redistribution and heterogeneous microcirculatory perfusion can explain apparently maintained regional oxidative metabolism during mesenteric hypoperfusion, despite local signs of anaerobic metabolism. Early decreasing glucose concentrations suggest that substrate supply may become crucial before oxygen consumption decreases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE: To determine if neurally adjusted ventilatory assist (NAVA) that delivers pressure in proportion to diaphragm electrical activity is as protective to acutely injured lungs (ALI) and non-pulmonary organs as volume controlled (VC), low tidal volume (Vt), high positive end-expiratory pressure (PEEP) ventilation. DESIGN: Prospective, randomized, laboratory animal study. SUBJECTS: Twenty-seven male New Zealand white rabbits. INTERVENTIONS: Anesthetized rabbits with hydrochloric acid-induced ALI were randomized (n = 9 per group) to 5.5 h NAVA (non-paralyzed), VC (paralyzed; Vt 6-ml/kg), or VC (paralyzed; Vt 15-ml/kg). PEEP was adjusted to hemodynamic goals in NAVA and VC6-ml/kg, and was 1 cmH2O in VC15-ml/kg. MEASUREMENTS AND MAIN RESULTS: PaO2/FiO2; lung wet-to-dry ratio; lung histology; interleukin-8 (IL-8) concentrations in broncho-alveolar-lavage (BAL) fluid, plasma, and non-pulmonary organs; plasminogen activator inhibitor type-1 and tissue factor in BAL fluid and plasma; non-pulmonary organ apoptosis rate; creatinine clearance; echocardiography. PEEP was similar in NAVA and VC6-ml/kg. During NAVA, Vt was lower (3.1 +/- 0.9 ml/kg), whereas PaO2/ FiO2, respiratory rate, and PaCO2 were higher compared to VC6-ml/kg (p<0.05 for all). Variables assessing ventilator-induced lung injury (VILI), IL-8 levels, non-pulmonary organ apoptosis rate, and kidney as well as cardiac performance were similar in NAVA compared to VC6-ml/kg. VILI and non-pulmonary organ dysfunction was attenuated in both groups compared to VC15-ml/kg. CONCLUSIONS: In anesthetized rabbits with early experimental ALI, NAVA is as effective as VC6-ml/kg in preventing VILI, in attenuating excessive systemic and remote organ inflammation, and in preserving cardiac and kidney function.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVES Percutaneous closure of the transapical (TA) access site for large-calibre devices is an unsolved issue. We report the first experimental data on the TA PLUG device for true-percutaneous closure following large apical access for transcatheter aortic valve implantation. METHODS The TA PLUG, a self-sealing full-core closure device, was implanted in an acute animal study in six pigs (60.2 ± 0.7 kg). All the pigs received 100 IU/kg of heparin. The targeted activated clotting time was left to normalize spontaneously. After accessing the left ventricular apex with a 39 French introducer, the closure plug device was delivered with a 33 French over-the-wire system under fluoroscopic guidance into the apex. Time to full haemostasis as well as rate of bleeding was recorded. Self-anchoring properties were assessed by haemodynamic push stress under adrenalin challenge. An additional feasibility study was conducted in four pigs (58.4 ± 1.1 kg) with full surgical exposure of the apex, and assessed device anchoring by pull-force measurements with 0.5 Newton (N) increments. All the animals were electively sacrified. Post-mortem analysis of the heart was performed and the renal embolic index assessed. RESULTS Of six apical closure devices, five were correctly inserted and fully deployed at the first attempt. One became blocked in the delivery system and was placed successfully at the second attempt. In all the animals, complete haemostasis was immediate and no leak was recorded during the 5-h observation period. Neither leak nor any device dislodgement was observed under haemodynamic push stress with repeated left ventricular peak pressure of up to 220 mmHg. In the feasibility study assessing pull-stressing, device migration occurred at a force of 3.3 ± 0.5 N corresponding to 247.5 mmHg. Post-mortem analyses confirmed full expansion of all devices at the intended target. No macroscopic damage was identified at the surrounding myocardium. The renal embolic index was zero. CONCLUSIONS True-percutaneous left ventricular apex closure following large access is feasible with the self-sealing TA PLUG. The device allows for immediate haemostasis and a reliable anchoring in the acute animal setting. This is the first report of a true-percutaneous closure for large-calibre transcatheter aortic valve implantation access.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Study Design. An experimental animal study. Objective. To investigate histomorphometric and radiographical changes in the BB.4S rat model after PEEK (polyetheretherketone) nonfusion interspinous device implantation. Summary of Background Data. Clinical effectiveness of the PEEK nonfusion spine implant Wallis (Abbott, Bordeaux, France; now Zimmer, Warsaw, IN) is well documented. However, there is a lack of evidence on the long-term effects of this implant on bone, in particular its influence on structural changes of bone elements of the lumbar spine. Methods. Twenty-four male BB.4S rats aged 11 weeks underwent surgery for implantation of a PEEK nonfusion interspinous device or for a sham procedure in 3 groups of 8 animals each: 1) implantation at level L4–L5; 2) implantation at level L5–L6; and 3) sham surgery. Eleven weeks postoperatively osteolyses at the implant-bone interface were measured via radiograph, bone mineral density of vertebral bodies was analyzed using osteodensitometry, and bone mineral content as well as resorption of the spinous processes were examined by histomorphometry. Results. Resorption of the spinous processes at the site of the interspinous implant was found in all treated segments. There was no significant difference in either bone density of vertebral bodies or histomorphometric structure of the spinous processes between adjacent vertebral bodies, between treated and untreated segments and between groups. Conclusion. These findings indicate that resorption of spinous processes because of a result of implant loosening, inhibit the targeted load redistribution through the PEEK nonfusion interspinous device in the lumbar spinal segment of the rat. This leads to reduced long-term stability of the implant in the animal model. These results suggest that PEEK nonfusion interspinous devices like the Wallis implants may have time-limited effects and should only be used for specified indications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract BACKGROUND: Pulse pressure variations (PPVs) and stroke volume variations (SVVs) are dynamic indices for predicting fluid responsiveness in intensive care unit patients. These hemodynamic markers underscore Frank-Starling law by which volume expansion increases cardiac output (CO). The aim of the present study was to evaluate the impact of the administration of catecholamines on PPV, SVV, and inferior vena cava flow (IVCF). METHODS: In this prospective, physiologic, animal study, hemodynamic parameters were measured in deeply sedated and mechanically ventilated pigs. Systemic hemodynamic and pressure-volume loops obtained by inferior vena cava occlusion were recorded. Measurements were collected during two conditions, that is, normovolemia and hypovolemia, generated by blood removal to obtain a mean arterial pressure value lower than 60 mm Hg. At each condition, CO, IVCF, SVV, and PPV were assessed by catheters and flow meters. Data were compared between the conditions normovolemia and hypovolemia before and after intravenous administrations of norepinephrine and epinephrine using a nonparametric Wilcoxon test. RESULTS: Eight pigs were anesthetized, mechanically ventilated, and equipped. Both norepinephrine and epinephrine significantly increased IVCF and decreased PPV and SVV, regardless of volemic conditions (p < 0.05). However, epinephrine was also able to significantly increase CO regardless of volemic conditions. CONCLUSION: The present study demonstrates that intravenous administrations of norepinephrine and epinephrine increase IVCF, whatever the volemic conditions are. The concomitant decreases in PPV and SVV corroborate the fact that catecholamine administration recruits unstressed blood volume. In this regard, understanding a decrease in PPV and SVV values, after catecholamine administration, as an obvious indication of a restored volemia could be an outright misinterpretation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND Brain dysfunction is common in sepsis. We aimed to assess whether cerebral perfusion, oxygenation, and/or metabolism are abnormal during early endotoxemia, and how they may relate to potential neurohistological changes. METHODS In this prospective animal study, we included 12 pigs (weight: 42 ± 4 kg; mean ± SD) that were exposed to Escherichia coli lipopolysaccharide (E. coli LPS B0111 : B4, 0.4 μg/kg/h) or saline infusion (n = 6, each) for 10 h. Systemic hemodynamics, cerebral blood flow, intracranial pressure, and brain tissue oxygen tension were continuously measured. At the end of the experiment, formalin-fixed brains were cut in coronal sections and embedded in paraffin. Afterwards, the sections were cut at 5 microns and stained with hematoxylin and eosin. RESULTS Stable systemic hemodynamics in both groups were associated with higher carotid arterial blood flow after 10 h of endotoxemia (9.0 ± 2.2 ml/kg/min) compared to controls (6.6 ± 1.2 ml/kg/min; time-group interaction: P = 0.014). Intracranial pressure, cerebral perfusion pressure, brain oxygen consumption, and brain tissue oxygen tension were similar in both groups. In four of the six endotoxemic animals but in none of the controls, cerebral tissue lesions were found (encephalomalacia with spongy degeneration of white matter, axonal swelling, and ischemic neuronal thalamic necrosis), including significant venous vascular alterations, predominantly in the brainstem, in three of the four animals. CONCLUSIONS Early endotoxemia seems to be associated with histological signs of brain damage unrelated to systemic or cerebral hemodynamics or oxygenation.