62 resultados para Animal health technicians
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The commercial use of animal cloning for breeding food producing animals has been limited so far by biological and technical constraints such as adverse effects on the health and welfare of animals, especially high perinatal and postnatal disease and mortality of clones. However, the improvement of the technique may overcome those problems in future and contribute to the spread of cloning in agricultural production, which raises concern not only on health and welfare aspects but also on food safety and ethics. This may cause conflict in international trade. The present article reviews these topics on the basis of up-to-date scientific opinions.
Resumo:
By the distribution of a questionnaire between all Swiss cattle practitioners it was possible to investigate abortions and other animal health problems related to Bluetongue vaccination 2009. The questionnaire helped to obtain plausibility and timely relation of the reported disorders. 58 abortions in cattle and different herd health problems could be examined. Because there is no possibility to show that a vaccination itself leads to an abortion the results of proven causes of abortions prior and after Bluetongue vaccination were compared regarding their diagnosis. Due to the fact that diagnosis and solving rate of abortions did not differ before and after vaccination, the vaccination itself cannot be responsible for the abortions. Evaluation of different herd health problems showed that Bluetongue vaccination was not responsible for these disorders which often existed already prior to vaccination. Herd health problems generally have multifactorial causes what makes it difficult to asses the effect of Bluetongue vaccination in some cases.
Resumo:
High-quality data are essential for veterinary surveillance systems, and their quality can be affected by the source and the method of collection. Data recorded on farms could provide detailed information about the health of a population of animals, but the accuracy of the data recorded by farmers is uncertain. The aims of this study were to evaluate the quality of the data on animal health recorded on 97 Swiss dairy farms, to compare the quality of the data obtained by different recording systems, and to obtain baseline data on the health of the animals on the 97 farms. Data on animal health were collected from the farms for a year. Their quality was evaluated by assessing the completeness and accuracy of the recorded information, and by comparing farmers' and veterinarians' records. The quality of the data provided by the farmers was satisfactory, although electronic recording systems made it easier to trace the animals treated. The farmers tended to record more health-related events than the veterinarians, although this varied with the event considered, and some events were recorded only by the veterinarians. The farmers' attitude towards data collection was positive. Factors such as motivation, feedback, training, and simplicity and standardisation of data collection were important because they influenced the quality of the data.
Resumo:
Motivated by the perception that human and veterinary medicines can cooperate in more ways than just fighting zoonoses, the authors organized a roundtable during the 2013 annual meeting of the International Society for Disease Surveillance (ISDS). Collaborations between human and animal health sectors were reported to often rise in response to zoonotic outbreaks (during crisis time) and be mainly based on personal networks. Ways to maintain and strengthen these links were discussed.
Resumo:
The value of wildlife has long been ignored or under-rated. However, growing concerns about biodiversity loss and emerging diseases of wildlife origin have enhanced debates about the importance of wildlife. Wildlife-related diseases are viewed through these debates as a potential threat to wildlife conservation and domestic animal and human health. This article provides an overview of the values we place on wildlife (positive: socio-cultural, nutritional, economic, ecological; and negative: damages, health issues) and of the significance of diseases for biodiversity conservation. It shows that the values of wildlife, the emergence of wildlife diseases and biodiversity conservation are closely linked. The article also illustrates why investigations into wildlife diseases are now recognized as an integral part of global health issues. The modern One Health concept requires multi-disciplinary research groups including veterinarians, human physicians, ecologists and other scientists collaborating towards a common goal: prevention of disease emergence and preservation of ecosystems, both of which are essential to protect human life and well-being.
Resumo:
The reporting of outputs from health surveillance systems should be done in a near real-time and interactive manner in order to provide decision makers with powerful means to identify, assess, and manage health hazards as early and efficiently as possible. While this is currently rarely the case in veterinary public health surveillance, reporting tools do exist for the visual exploration and interactive interrogation of health data. In this work, we used tools freely available from the Google Maps and Charts library to develop a web application reporting health-related data derived from slaughterhouse surveillance and from a newly established web-based equine surveillance system in Switzerland. Both sets of tools allowed entry-level usage without or with minimal programing skills while being flexible enough to cater for more complex scenarios for users with greater programing skills. In particular, interfaces linking statistical softwares and Google tools provide additional analytical functionality (such as algorithms for the detection of unusually high case occurrences) for inclusion in the reporting process. We show that such powerful approaches could improve timely dissemination and communication of technical information to decision makers and other stakeholders and could foster the early-warning capacity of animal health surveillance systems.
Resumo:
Large amounts of animal health care data are present in veterinary electronic medical records (EMR) and they present an opportunity for companion animal disease surveillance. Veterinary patient records are largely in free-text without clinical coding or fixed vocabulary. Text-mining, a computer and information technology application, is needed to identify cases of interest and to add structure to the otherwise unstructured data. In this study EMR's were extracted from veterinary management programs of 12 participating veterinary practices and stored in a data warehouse. Using commercially available text-mining software (WordStat™), we developed a categorization dictionary that could be used to automatically classify and extract enteric syndrome cases from the warehoused electronic medical records. The diagnostic accuracy of the text-miner for retrieving cases of enteric syndrome was measured against human reviewers who independently categorized a random sample of 2500 cases as enteric syndrome positive or negative. Compared to the reviewers, the text-miner retrieved cases with enteric signs with a sensitivity of 87.6% (95%CI, 80.4-92.9%) and a specificity of 99.3% (95%CI, 98.9-99.6%). Automatic and accurate detection of enteric syndrome cases provides an opportunity for community surveillance of enteric pathogens in companion animals.
Resumo:
Parasites threaten human and animal health globally. It is estimated that more than 60% of people on planet Earth carry at least one parasite, many of them several different species. Unfortunately, parasite studies suffer from duplications and inconsistencies between different investigator groups. Hence, groups need to collaborate in an integrated manner in areas including parasite control, improved therapy strategies, diagnostic and surveillance tools, and public awareness. Parasite studies will be better served if there is coordinated management of field data and samples across multidisciplinary approach plans, among academic and non-academic organizations worldwide. In this paper we report the first 'Living organism-World Molecular Network', with the cooperation of 167 parasitologists from 88 countries on all continents. This integrative approach, the 'Sarcoptes-World Molecular Network', seeks to harmonize Sarcoptes epidemiology, diagnosis, treatment, and molecular studies from all over the world, with the aim of decreasing mite infestations in humans and animals.
Resumo:
The protozoan parasite Tritrichomonas foetus is well known as an important causative agent of infertility and abortion in cattle (bovine trichomonosis). This World Organisation for Animal Health (O.I.E.) notifiable disease is thought to be under control in many countries including Switzerland. In recent studies, however, T. foetus has also been identified as an intestinal parasite that causes chronic large-bowel diarrhoea in cats. Since the feline isolates were considered indistinguishable from bovine isolates, the possibility and risk of parasite transmission from cats to cattle and vice versa has been intensively discussed in current literature. Therefore, we investigated if cat and cattle isolates are genetically distinct from each other or in fact represent identical genotypes. For this purpose, two independent genetic loci were selected that turned out to be well-suited for a PCR sequencing-based genotyping of trichomonad isolates: (i) previously published internal transcribed spacer region 2 (ITS-2) and (ii) a semi-conserved sequence stretch of the elongation factor-1 alpha (EF-1alpha) gene used for the first time in the present study. Respective comparative analyses revealed that both loci were sufficiently variable to allow unambiguous genetic discrimination between different trichomonad species. Comparison of both genetic loci confirmed that T. suis and T. mobilensis are phylogenetically very close to T. foetus. Moreover, these two genetic markers were suited to define host-specific genotypes of T. foetus. Both loci showed single base differences between cat and cattle isolates but showed full sequence identity within strains from either cat or cattle isolates. Furthermore, an additional PCR with a forward primer designed to specifically amplify the bovine sequence of EF-1alpha was able to discriminate bovine isolates of T. foetus from feline isolates and also from other trichomonads. The implications these minor genetic differences may have on the biological properties of the distinct isolates remain to be investigated.