6 resultados para Android, illuminazione stradale, geolocalizzazione

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract. During the last decade mobile communications increasingly became part of people's daily routine. Such usage raises new challenges regarding devices' battery lifetime management when using most popular wireless access technologies, such as IEEE 802.11. This paper investigates the energy/delay trade-off of using an end-user driven power saving approach, when compared with the standard IEEE 802.11 power saving algorithms. The assessment was conducted in a real testbed using an Android mobile phone and high-precision energy measurement hardware. The results show clear energy benefits of employing user-driven power saving techniques, when compared with other standard approaches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we describe agent-based content retrieval for opportunistic networks, where requesters can delegate content retrieval to agents, which retrieve the content on their behalf. The approach has been implemented in CCNx, the open source CCN framework, and evaluated on Android smart phones. Evaluations have shown that the overhead of agent delegation is only noticeable for very small content. For content larger than 4MB, agent-based content retrieval can even result in a throughput increase of 20% compared to standard CCN download applications. The requester asks every probe interval for agents that have retrieved the desired content. Evaluations have shown that a probe interval of 30s delivers the best overall performance in our scenario because the number of transmitted notification messages can be decreased by up to 80% without significantly increasing the download time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we present a revolutionary vision of 5G networks, in which SDN programs wireless network functions, and where Mobile Network Operators (MNO), Enterprises, and Over-The-Top (OTT) third parties are provided with NFV-ready Network Store. The proposed Network Store serves as a digital distribution platform of programmable Virtualized Network Functions (VNFs) that enable 5G application use-cases. Currently existing application stores, such as Apple's App Store for iOS applications, Google's Play Store for Android, or Ubuntu's Software Center, deliver applications to user specific software platforms. Our vision is to provide a digital marketplace, gathering 5G enabling Network Applications and Network Functions, written to run on top of commodity cloud infrastructures, connected to remote radio heads (RRH). The 5G Network Store will be the same to the cloud as the application store is currently to a software platform.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spurred by the consumer market, companies increasingly deploy smartphones or tablet computers in their operations. However, unlike private users, companies typically struggle to cover their needs with existing applications, and therefore expand mobile software platforms through customized applications from multiple software vendors. Companies thereby combine the concepts of multi-sourcing and software platform ecosystems in a novel platform-based multi-sourcing setting. This implies, however, the clash of two different approaches towards the coordination of the underlying one-to-many inter-organizational relationships. So far, however, little is known about impacts of merging coordination approaches. Relying on convention theory, we addresses this gap by analyzing a platform-based multi-sourcing project between a client and six software vendors, that develop twenty-three custom-made applications on a common platform (Android). In doing so, we aim to understand how unequal coordination approaches merge, and whether and for what reason particular coordination mechanisms, design decisions, or practices disappear, while new ones emerge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND The European AIDS Clinical Society (EACS) guidelines are intended for all clinicians involved in the care of HIV-positive persons, and are available in print, online, and as a free App for download for iPhone and Android. GUIDELINE HIGHLIGHTS The 2015 version of the EACS guidelines contains major revisions in all sections; antiretroviral treatment (ART), comorbidities, coinfections and opportunistic diseases. Among the key revisions is the recommendation of ART for all HIV-positive persons, irrespectively of CD4 count, based on the Strategic Timing of AntiRetroviral Treatment (START) study results. The recommendations for the preferred and the alternative ART options have also been revised, and a new section on the use of pre-exposure prophylaxis (PrEP) has been added. A number of new antiretroviral drugs/drug combinations have been added to the updated tables on drug-drug interactions, adverse drug effects, dose adjustment for renal/liver insufficiency and for ART administration in persons with swallowing difficulties. The revisions of the coinfection section reflect the major advances in anti-hepatitis C virus (HCV) treatment with direct-acting antivirals with earlier start of treatment in individuals at increased risk of liver disease progression, and a phasing out of interferon-containing treatment regimens. The section on opportunistic diseases has been restructured according to individual pathogens/diseases and a new overview table has been added on CD4 count thresholds for different primary prophylaxes. CONCLUSIONS The diagnosis and management of HIV infection and related coinfections, opportunistic diseases and comorbidities continue to require a multidisciplinary effort for which the 2015 version of the EACS guidelines provides an easily accessable and updated overview.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the last decade wireless mobile communications have progressively become part of the people’s daily lives, leading users to expect to be “alwaysbest-connected” to the Internet, regardless of their location or time of day. This is indeed motivated by the fact that wireless access networks are increasingly ubiquitous, through different types of service providers, together with an outburst of thoroughly portable devices, namely laptops, tablets, mobile phones, among others. The “anytime and anywhere” connectivity criterion raises new challenges regarding the devices’ battery lifetime management, as energy becomes the most noteworthy restriction of the end-users’ satisfaction. This wireless access context has also stimulated the development of novel multimedia applications with high network demands, although lacking in energy-aware design. Therefore, the relationship between energy consumption and the quality of the multimedia applications perceived by end-users should be carefully investigated. This dissertation addresses energy-efficient multimedia communications in the IEEE 802.11 standard, which is the most widely used wireless access technology. It advances the literature by proposing a unique empirical assessment methodology and new power-saving algorithms, always bearing in mind the end-users’ feedback and evaluating quality perception. The new EViTEQ framework proposed in this thesis, for measuring video transmission quality and energy consumption simultaneously, in an integrated way, reveals the importance of having an empirical and high-accuracy methodology to assess the trade-off between quality and energy consumption, raised by the new end-users’ requirements. Extensive evaluations conducted with the EViTEQ framework revealed its flexibility and capability to accurately report both video transmission quality and energy consumption, as well as to be employed in rigorous investigations of network interface energy consumption patterns, regardless of the wireless access technology. Following the need to enhance the trade-off between energy consumption and application quality, this thesis proposes the Optimized Power save Algorithm for continuous Media Applications (OPAMA). By using the end-users’ feedback to establish a proper trade-off between energy consumption and application performance, OPAMA aims at enhancing the energy efficiency of end-users’ devices accessing the network through IEEE 802.11. OPAMA performance has been thoroughly analyzed within different scenarios and application types, including a simulation study and a real deployment in an Android testbed. When compared with the most popular standard power-saving mechanisms defined in the IEEE 802.11 standard, the obtained results revealed OPAMA’s capability to enhance energy efficiency, while keeping end-users’ Quality of Experience within the defined bounds. Furthermore, OPAMA was optimized to enable superior energy savings in multiple station environments, resulting in a new proposal called Enhanced Power Saving Mechanism for Multiple station Environments (OPAMA-EPS4ME). The results of this thesis highlight the relevance of having a highly accurate methodology to assess energy consumption and application quality when aiming to optimize the trade-off between energy and quality. Additionally, the obtained results based both on simulation and testbed evaluations, show clear benefits from employing userdriven power-saving techniques, such as OPAMA, instead of IEEE 802.11 standard power-saving approaches.