13 resultados para Ammonium, dissolved

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacteria are rapidly killed on copper surfaces. However, the mechanism of this process remains unclear. Using Enterococcus hirae, the effect of inactivation of copper homeostatic genes and of medium compositions on survival and copper dissolution was tested. The results support a role for dissolved copper ions in killing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphorus (P) is an essential macronutrient for all living organisms. Phosphorus is often present in nature as the soluble phosphate ion PO43– and has biological, terrestrial, and marine emission sources. Thus PO43– detected in ice cores has the potential to be an important tracer for biological activity in the past. In this study a continuous and highly sensitive absorption method for detection of dissolved reactive phosphorus (DRP) in ice cores has been developed using a molybdate reagent and a 2-m liquid waveguide capillary cell (LWCC). DRP is the soluble form of the nutrient phosphorus, which reacts with molybdate. The method was optimized to meet the low concentrations of DRP in Greenland ice, with a depth resolution of approximately 2 cm and an analytical uncertainty of 1.1 nM (0.1 ppb) PO43–. The method has been applied to segments of a shallow firn core from Northeast Greenland, indicating a mean concentration level of 2.74 nM (0.26 ppb) PO43– for the period 1930–2005 with a standard deviation of 1.37 nM (0.13 ppb) PO43– and values reaching as high as 10.52 nM (1 ppb) PO43–. Similar levels were detected for the period 1771–1823. Based on impurity abundances, dust and biogenic particles were found to be the most likely sources of DRP deposited in Northeast Greenland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reactive and noble gases dissolved in matrix pore water of low permeable crystalline bedrock were successfully extracted and characterized for the fist time based on drillcore samples from the Olkiluoto investigation site (SW Finland). Interaction between matrix pore water and fracture groundwater occurs predominately by diffusion. Changes in the chemical and isotopic composition of gases dissolved in fracture groundwater are transmitted and preserved in the pore water. Absolute concentrations, their ratios and the stable carbon isotope signature of hydrocarbon gases dissolved in pore water give valuable indications about the evolution of these gases in the nearby-flowing fracture groundwaters. Inert noble gases dissolved in matrix pore water and their isotopes combined with their in-situ production and accumulation rates deliver information about the residence time of pore water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose Precipitation of dissolved organic matter (DOM) by multivalent cations is important for biogeochemical cycling of organic carbon. We investigated to which extent cation bridges are involved in DOM precipitation and how cross-links by cations and water molecule bridges (WaMB) stabilise the matrix of precipitated DOM. Materials and methods DOM was precipitated from the aqueous extract of a forest floor layer adding solutions of Ca(NO3)2, Al(NO3)3 and Pb(NO3)2 with different initial metal cation/C (Me/C) ratios. Precipitates were investigated by differential scanning calorimetry before and after ageing to detect cation bridges, WaMB and restructuring of supramolecular structure. Results and discussion Twenty-five to sixty-seven per cent of the dissolved organic carbon was precipitated. The precipitation efficiency of cations increased in the order Ca < Al < Pb, while the cation content of precipitates increased in the order Pb < Ca < Al. The different order and the decrease in the WaMB transition temperature (T*) for Al/C > 3 is explained by additional formation of small AlOOH particles. Thermal analysis indicated WaMB and their disruption at T* of 53–65 °C. Like cation content, T* increased with increasing Me/C ratio and in the order Ca < Pb < Al for low Me/C. This supports the general assumption that cross-linking ability increases in the order Ca < Pb < Al. The low T* for high initial Me/C suggests less stable and less cross-linked precipitates than for low Me/C ratios. Conclusions Our results suggest a very similar thermal behaviour of OM bound in precipitates compared with soil organic matter and confirms the relevance of WaMB in stabilisation of the supramolecular structure of cation-DOM precipitates. Thus, stabilisation of the supramolecular structure of the DOM precipitates is subjected to dynamics in soils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methane (CH4) and carbon dioxide emissions from lakes are relevant for assessing the greenhouse gas output of wetlands. However, only few standardized datasets describe concentrations of these gases in lakes across different geographical regions. We studied concentrations and stable carbon isotopic composition (δ13C) of CH4 and dissolved inorganic carbon (DIC) in 32 small lakes from Finland, Sweden, Germany, the Netherlands, and Switzerland in late summer. Higher concentrations and δ13C values of DIC were observed in calcareous lakes than in lakes on non-calcareous areas. In stratified lakes, δ13C values of DIC were generally lower in the hypolimnion due to the degradation of organic matter (OM). Unexpectedly, increased δ13C values of DIC were registered above the sediment in several lakes. This may reflect carbonate dissolution in calcareous lakes or methanogenesis in deepwater layers or in the sediments. Surface water CH4 concentrations were generally higher in western and central European lakes than in Fennoscandian lakes, possibly due to higher CH4 production in the littoral sediments and lateral transport, whereas CH4 concentrations in the hypolimnion did not differ significantly between the regions. The δ13C values of CH4 in the sediment suggest that δ13C values of biogenic CH4 are not necessarily linked to δ13C values of sedimentary OM but may be strongly influenced by OM quality and methanogenic pathway. Our study suggests that CH4 and DIC cycling in small lakes differ between geographical regions and that this should be taken into account when regional studies on greenhouse gas emissions are upscaled to inter-regional scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims Climate and human impacts are changing the nitrogen (N) inputs and losses in terrestrial ecosystems. However, it is largely unknown how these two major drivers of global change will simultaneously influence the N cycle in drylands, the largest terrestrial biome on the planet. We conducted a global observational study to evaluate how aridity and human impacts, together with biotic and abiotic factors, affect key soil variables of the N cycle. Location Two hundred and twenty-four dryland sites from all continents except Antarctica widely differing in their environmental conditions and human influence. Methods Using a standardized field survey, we measured aridity, human impacts (i.e. proxies of land uses and air pollution), key biophysical variables (i.e. soil pH and texture and total plant cover) and six important variables related to N cycling in soils: total N, organic N, ammonium, nitrate, dissolved organic:inorganic N and N mineralization rates. We used structural equation modelling to assess the direct and indirect effects of aridity, human impacts and key biophysical variables on the N cycle. Results Human impacts increased the concentration of total N, while aridity reduced it. The effects of aridity and human impacts on the N cycle were spatially disconnected, which may favour scarcity of N in the most arid areas and promote its accumulation in the least arid areas. Main conclusions We found that increasing aridity and anthropogenic pressure are spatially disconnected in drylands. This implies that while places with low aridity and high human impact accumulate N, most arid sites with the lowest human impacts lose N. Our analyses also provide evidence that both increasing aridity and human impacts may enhance the relative dominance of inorganic N in dryland soils, having a negative impact on key functions and services provided by these ecosystems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Completion of fungal, plant and human genomes paved the way to the identification of erythrocytic rhesus proteins and their kidney homologs as ammonium transporters. Ammonium is the preferred nitrogen source of bacteria and fungi, and plants acquire nitrogen from the soil in the form of ammonium [1]. In animals and humans, assimilated forms of nitrogen - amino acids - are much preferred for nutrition, and, in the case of ammonotelic animals, ammonium is used for the excretion of nitrogen instead. In the human kidney, ammonium is produced, reabsorbed and excreted as a means to maintain pH balance and to get rid of surplus inorganic nitrogen. Whether ammonium transport also has a role in the pH regulation of other organs is not known and the molecular mechanisms were not, up to now, understood.