45 resultados para Aminobutyric-acid Transporters
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Benzodiazepines are widely used drugs. They exert sedative/hypnotic, anxiolytic, muscle relaxant, and anticonvulsant effects and act through a specific high affinity binding site on the major inhibitory neurotransmitter receptor, the gamma-aminobutyric acid type A (GABA(A)) receptor. Ligands of the benzodiazepine-binding site are classified into three groups depending on their mode of action: positive and negative allosteric modulators and antagonists. To rationally design ligands of the benzodiazepine site in different isoforms of the GABA(A) receptor, we need to understand the relative positioning and overlap of modulators of different allosteric properties. To solve these questions, we used a proximity-accelerated irreversible chemical coupling reaction. GABA(A) receptor residues thought to reside in the benzodiazepine-binding site were individually mutated to cysteine and combined with a cysteine-reactive benzodiazepine site ligand. Direct apposition of reaction partners is expected to lead to a covalent reaction. We describe here such a reaction of predominantly alpha(1)H101C and also three other mutants (alpha(1)G157C, alpha(1)V202C, and alpha(1)V211C) with an Imid-NCS derivative in which a reactive isothiocyanate group (-NCS) replaces the azide group (-N(3)) in the partial negative allosteric modulator Ro15-4513. Our results show four contact points of imidazobenzodiazepines with the receptor, alpha(1)H101C being shared by classical benzodiazepines. Taken together with previous data, a similar orientation of these ligands within the benzodiazepine-binding pocket may be proposed.
Resumo:
Tight homeostatic control of brain amino acids (AA) depends on transport by solute carrier family proteins expressed by the blood-brain barrier (BBB) microvascular endothelial cells (BMEC). To characterize the mouse BMEC transcriptome and probe culture-induced changes, microarray analyses of platelet endothelial cell adhesion molecule-1-positive (PECAM1(+)) endothelial cells (ppMBMECs) were compared with primary MBMECs (pMBMEC) cultured in the presence or absence of glial cells and with b.End5 endothelioma cell line. Selected cell marker and AA transporter mRNA levels were further verified by reverse transcription real-time PCR. Regardless of glial coculture, expression of a large subset of genes was strongly altered by a brief culture step. This is consistent with the known dependence of BMECs on in vivo interactions to maintain physiologic functions, for example, tight barrier formation, and their consequent dedifferentiation in culture. Seven (4F2hc, Lat1, Taut, Snat3, Snat5, Xpct, and Cat1) of nine AA transporter mRNAs highly expressed in freshly isolated ppMBMECs were strongly downregulated for all cultures and two (Snat2 and Eaat3) were variably regulated. In contrast, five AA transporter mRNAs with low expression in ppMBMECs, including y(+)Lat2, xCT, and Snat1, were upregulated by culture. We hypothesized that the AA transporters highly expressed in ppMBMECs and downregulated in culture have a major in vivo function for BBB transendothelial transport.
Resumo:
Amino acids are necessary for all living cells and organisms. Specialized transporters mediate the transfer of amino acids across plasma membranes. Malfunction of these proteins can affect whole-body homoeostasis giving raise to diverse human diseases. Here, we review the main features of the SLC3 and SLC7 families of amino acid transporters. The SLC7 family is divided into two subfamilies, the cationic amino acid transporters (CATs), and the L-type amino acid transporters (LATs). The latter are the light or catalytic subunits of the heteromeric amino acid transporters (HATs), which are associated by a disulfide bridge with the heavy subunits 4F2hc or rBAT. These two subunits are glycoproteins and form the SLC3 family. Most CAT subfamily members were functionally characterized and shown to function as facilitated diffusers mediating the entry and efflux of cationic amino acids. In certain cells, CATs play an important role in the delivery of L-arginine for the synthesis of nitric oxide. HATs are mostly exchangers with a broad spectrum of substrates and are crucial in renal and intestinal re-absorption and cell redox balance. Furthermore, the role of the HAT 4F2hc/LAT1 in tumor growth and the application of LAT1 inhibitors and PET tracers for reduction of tumor progression and imaging of tumors are discussed. Finally, we describe the link between specific mutations in HATs and the primary inherited aminoacidurias, cystinuria and lysinuric protein intolerance.
Resumo:
The SLC43 family is composed of only three genes coding for the plasma membrane facilitator system l amino acid transporters LAT3 (SLC43A1; TC 2.A.1.44.1) and LAT4 (SLC43A2; TC 2.A.1.44.2), and the orphan protein EEG1 (SLC43A3; TC 2.A.1.44.3). Besides the known mechanism of transport of LAT3 and LAT4, their physiological roles still remain quite obscure. Morphants suggested a role of LAT3 in renal podocyte development in zebrafish. Expression in liver and skeletal muscle, and up-regulation by starvation suggest a role of LAT3 in the flux of branched-chain amino acids (BCAAs) from liver and skeletal muscle to the bloodstream. Finally, LAT3 is up-regulated in androgen-dependent cancers, suggesting a role in mTORC1 signaling in this type of tumors. In addition, LAT4 might contribute to the transfer of BCAAs from mother to fetus. Unfortunately, the EEG1 mouse model (EEG1(Y221∗)) described here has not yet offered a clue to the physiological role of this orphan protein.
Resumo:
Human heteromeric amino acid transporters (HATs) play key roles in renal and intestinal re-absorption, cell redox balance and tumor growth. These transporters are composed of a heavy and a light subunit, which are connected by a disulphide bridge. Heavy subunits are the two type II membrane N-glycoproteins rBAT and 4F2hc, while L-type amino acid transporters (LATs) are the light and catalytic subunits of HATs. We tested the expression of human 4F2hc and rBAT as well as seven light subunits in the methylotrophic yeast Pichia pastoris. 4F2hc and the light subunit LAT2 showed the highest expression levels and yields after detergent solubilization. Co-transformation of both subunits in Pichia cells resulted in overexpression of the disulphide bridge-linked 4F2hc/LAT2 heterodimer. Two sequential affinity chromatography steps were applied to purify detergent-solubilized heterodimers yielding ~1mg of HAT from 2l of cell culture. Our results indicate that P. pastoris is a convenient system for the expression and purification of human 4F2hc/LAT2 for structural studies.
Resumo:
Associations between the central serotonergic and γ-aminobutyric acid (GABA) systems play key roles in the prefrontal cortical regulation of emotion and cognition and in the pathophysiology and pharmacotherapy of highly prevalent psychiatric disorders. The goal of this study was to test the effects of common variants of the tryptophan hydroxylase isoform 2 (TPH2) gene on GABA concentration in the prefrontal cortex (PFC) using magnetic resonance spectroscopy. In this study involving 64 individuals, we examined the associations between prefrontal cortical GABA concentration and 12 single nucleotide polymorphisms (SNPs) spanning the TPH2 gene, including rs4570625 (−703 G/T SNP), a potentially functional TPH2 polymorphism that has been associated with decreased TPH2 mRNA expression and panic disorder. Our results revealed a significant association between increased GABA concentration in the PFC and the T-allele frequencies of two TPH2 SNPs, namely rs4570625 (−703 G/T) and rs2129575 (p≤0.0004) and the C-allele frequency of one TPH2 SNP, namely rs1386491 (p = 0.0003) in female subjects. We concluded that rs4570625 (−703 G/T), rs2129575 and rs1386491 play a significant role in GABAergic neurotransmission and may contribute to the sex-specific dysfunction of the GABAergic system in the PFC.
Resumo:
The γ-aminobutyric acid (GABA) system has been proposed as a target for novel antidepressant and anxiolytic treatments. Emerging evidence suggests that gabapentin (GBP), an anticonvulsant drug that significantly increases brain GABA levels, is effective in the treatment of anxiety disorders. The current study was designed to measure prefrontal and occipital GABA levels in medication-free healthy subjects after taking 0 mg, 150 mg and 300 mg GBP. Subjects were scanned on a 3T scanner using a transmit-receive head coil that provided a relatively homogenous radiofrequency field to obtain spectroscopy measurement in the medial prefrontal (MPFC) and occipital cortex (OCC). There was no dose-dependent effect of GBP on GABA levels in the OCC or MPFC. There was also no effect on Glx, choline or N-acetyl-aspartate concentrations. The previously reported finding of increased GABA levels after GBP treatment is not evident for healthy subjects at the dose of 150 and 300 mg. As a result, if subjects are scanned on a 3T scanner, low dose GPB is not useful as an experimental challenge agent on the GABA system.
Resumo:
Two peptide transporter (PTR) homologs have been isolated from developing seeds of faba bear, (Vicia faba). VfPTR1 was shown to be a functional peptide transporter through complementation of a yeast mutant. Expression patterns of VfPTR1 and VfPTR2 as well as of the amino acid permease VfAAP1 (Miranda et al., 2001) were compared throughout seed development and germination. In developing seeds, the highest levels of VfPTR1 transcripts were reached during midcotyledon development, whereas VfAAP1 transcripts were most abundant during early cotyledon development, before the appearance of storage protein gene transcripts, and were detectable until late cotyledon development. During early germination, VfPTR1 mRNA appeared first in cotyledons and later, during seedling growth, also in axes and roots. Expression of VfPTR2 and VfAAP1 was delayed compared with VfPTR1, and was restricted to the nascent organs of the seedlings. Localization of VfPTR1 transcripts showed that this FTR is temporally and spatially regulated during cotyledon development. In germinating seeds, VfPTR1 mRNA was localized in root hairs and root epidermal cells, suggesting a role in nutrient uptake from the soil. In seedling roots, VfPTR1 was repressed by a dipeptide and by an amino acid, whereas nitrate was without influence.
Resumo:
Arabidopsis amino acid transporters (AAPs) show individual temporal and spatial expression patterns. A new amino acid transporter, AAP8 was isolated by reverse transcription-PCR. Growth and transport assays in comparison to AAP1-5 characterize AAP8 and AAP6 as high affinity amino acid transport systems from Arabidopsis. Histochemical promoter-beta-glucuronidase (GUS) studies identified AAP6 expression in xylem parenchyma, cells requiring high affinity transport due to the low amino acid concentration in xylem sap. AAP6 may thus function in uptake of amino acids from xylem. Histochemical analysis of AAP8 revealed stage-dependent expression in siliques and developing seeds. Thus AAP8 is probably responsible for import of organic nitrogen into developing seeds. The only missing transporter of the family AAP7 was nonfunctional in yeast with respect to amino acid transport, and expression was not detectable. Therefore, AAP6 and -8 are the only members of the family able to transport aspartate with physiologically relevant affinity. AAP1, -6 and -8 are the closest AAP paralogs. Although AAP1 and AAP8 originate from a duplicated region on chromosome I, biochemical properties and expression pattern diverged. Overlapping substrate specificities paired with individual properties and expression patterns point to specific functions of each of the AAP genes in nitrogen distribution rather than to mere redundancy.
Resumo:
When comparing the transporters of three completely sequenced eukaryotic genomes - Saccharomyces cerevisiae, Arabidopsis thaliana and Homo sapiens - transporter types can be distinguished according to phylogeny, substrate spectrum, transport mechanism and cell specificity. The known amino acid transporters belong to five different superfamilies. Two preferentially Na+-coupled transporter superfamilies are not represented in them yeast and Arabidopsis genomes, whereas the other three groups, which often function as H+-coupled systems, have members in all investigated genomes. Additional superfamilies exist for organellar transport, including mitochondrial and plastidic carriers. When used in combination with phylogenetic analyses, functional comparison might aid our prediction of physiological functions for related but uncharacterized open reading frames.
Resumo:
We have identified YkbA from Bacillus subtilis as a novel member of the L-amino acid transporter (LAT) family of amino acid transporters. The protein is approximately 30% identical in amino acid sequence to the light subunits of human heteromeric amino acid transporters. Purified His-tagged YkbA from Escherichia coli membranes reconstituted in proteoliposomes exhibited sodium-independent, obligatory exchange activity for L-serine and L-threonine and also for aromatic amino acids, albeit with less activity. Thus, we propose that YkbA be renamed SteT (Ser/Thr exchanger transporter). Kinetic analysis supports a sequential mechanism of exchange for SteT. Freeze-fracture analysis of purified, functionally active SteT in proteoliposomes, together with blue native polyacrylamide gel electrophoresis and transmission electron microscopy of detergent-solubilized purified SteT, suggest that the transporter exists in a monomeric form. Freeze-fracture analysis showed spherical particles with a diameter of 7.4 nm. Transmission electron microscopy revealed elliptical particles (diameters 6 x 7 nm) with a distinct central depression. To our knowledge, this is the first functional characterization of a prokaryotic member of the LAT family and the first structural data on an APC (amino acids, polyamines, and choline for organocations) transporter. SteT represents an excellent model to study the molecular architecture of the light subunits of heteromeric amino acid transporters and other APC transporters.
Resumo:
Proline transporters (ProTs) mediate transport of the compatible solutes Pro, glycine betaine, and the stress-induced compound gamma-aminobutyric acid. A new member of this gene family, AtProT3, was isolated from Arabidopsis (Arabidopsis thaliana), and its properties were compared to AtProT1 and AtProT2. Transient expression of fusions of AtProT and the green fluorescent protein in tobacco (Nicotiana tabacum) protoplasts revealed that all three AtProTs were localized at the plasma membrane. Expression in a yeast (Saccharomyces cerevisiae) mutant demonstrated that the affinity of all three AtProTs was highest for glycine betaine (K-m = 0.1-0.3 mM), lower for Pro (K-m = 0.4-1 mM), and lowest for gamma-aminobutyric acid (K-m = 4-5 mM). Relative quantification of the mRNA level using real-time PCR and analyses of transgenic plants expressing the beta-glucuronidase (uidA) gene under control of individual AtProT promoters showed that the expression pattern of AtProTs are complementary. AtProT1 expression was found in the phloem or phloem parenchyma cells throughout the whole plant, indicative of a role in long-distance transport of compatible solutes. beta-Glucuronidase activity under the control of the AtProT2 promoter was restricted to the epidermis and the cortex cells in roots, whereas in leaves, staining could be demonstrated only after wounding. In contrast, AtProT3 expression was restricted to the above-ground parts of the plant and could be localized to the epidermal cells in leaves. These results showed that, although intracellular localization, substrate specificity, and affinity are very similar, the transporters fulfill different roles in planta.
Resumo:
Vitamin C (ascorbic acid) is required for the synthesis of collagen, carnitine, catecholamine and the neurotransmitter norepinephrine. Vitamin C also plays an important role in protection against oxidative stress. Transporters for vitamin C and its oxidized form dehydroascorbate (DHA) are crucial to keep vitamin concentrations optimal in the body. The human SLC23 family consists of the Na(+)-dependent vitamin C transporters SVCT1 (SLC23A1) and SVCT2 (SLC23A2) and the orphan transporter SVCT3 (SLC23A3). Phylogenetically, the SLC23 family belongs to the nucleobase-ascorbate transporter family although no specificity for nucleobases has yet been demonstrated for the human members of this family. In fact, the SVCT1 and SVCT2 transporters are rather specific for ascorbic acid. SVCT1 is expressed in epithelial tissues such as intestine, where it contributes to the maintenance of whole-body ascorbic acid levels, whereas the expression of SVCT2 is relatively widespread either to protect metabolically active cells and specialized tissues from oxidative stress or to deliver ascorbic acid to tissues that are in high demand of the vitamin for enzymatic reactions. DHA, the oxidized form of ascorbic acid is taken up and distributed in the body by facilitated transport via members of the SLC2/GLUT family (GLUT1, GLUT3, and GLUT4). Although, the main focus of this review is on the SLC23 family of ascorbic acid transporters, transporters of DHA and nucleobases are also briefly discussed for completeness.