24 resultados para Ambient pressures
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Intra-organ and intra-vascular pressures can be used to estimate intra-abdominal pressure. The aim of this prospective, interventional study was to assess the effect of PEEP on the accuracy of pressure estimation at different measurement sites in a model of increased abdominal pressure.
Resumo:
Standard methods for the estimation of the postmortem interval (PMI, time since death), based on the cooling of the corpse, are limited to about 48 h after death. As an alternative, noninvasive postmortem observation of alterations of brain metabolites by means of (1)H MRS has been suggested for an estimation of the PMI at room temperature, so far without including the effect of other ambient temperatures. In order to study the temperature effect, localized (1)H MRS was used to follow brain decomposition in a sheep brain model at four different temperatures between 4 and 26°C with repeated measurements up to 2100 h postmortem. The simultaneous determination of 25 different biochemical compounds at each measurement allowed the time courses of concentration changes to be followed. A sudden and almost simultaneous change of the concentrations of seven compounds was observed after a time span that decreased exponentially from 700 h at 4°C to 30 h at 26°C ambient temperature. As this represents, most probably, the onset of highly variable bacterial decomposition, and thus defines the upper limit for a reliable PMI estimation, data were analyzed only up to this start of bacterial decomposition. As 13 compounds showed unequivocal, reproducible concentration changes during this period while eight showed a linear increase with a slope that was unambiguously related to ambient temperature. Therefore, a single analytical function with PMI and temperature as variables can describe the time courses of metabolite concentrations. Using the inverse of this function, metabolite concentrations determined from a single MR spectrum can be used, together with known ambient temperatures, to calculate the PMI of a corpse. It is concluded that the effect of ambient temperature can be reliably included in the PMI determination by (1)H MRS.
Resumo:
PURPOSE: To compare the effects on heart rate (HR), on left ventricular (LV) or arterial pressures, and the general safety of a non-ionic low-osmolar contrast medium (CM) and a non-ionic iso-osmolar CM in patients undergoing cardiac angiography (CA) or peripheral intra-arterial digital subtraction angiography (IA-DSA). MATERIALS AND METHODS: Two double-blind, randomized studies were conducted in 216 patients who underwent CA (n=120) or peripheral IA-DSA (n=96). Patients referred for CA received a low-osmolar monomeric CM (iomeprol-350, n=60) or an iso-osmolar dimeric CM (iodixanol-320; n=60). HR and LV peak systolic and end-diastolic pressures were determined before and after the first injection during left and right coronary arteriography and left ventriculography. Monitoring for all types of adverse event (AE) was performed for 24 h following the procedure. t-tests were performed to compare CM for effects on HR. Patients referred for IA-DSA received iomeprol-300 (n=49) or iodixanol-320 (n=47). HR and arterial blood pressure (BP) were evaluated before and after the first 4 injections. Monitoring for AE was performed for 4 h following the procedure. Repeated-measures ANOVA was used to compare mean HR changes across the first 4 injections, whereas changes after the first injection were compared using t-tests. RESULTS: No significant differences were noted between iomeprol and iodixanol in terms of mean changes in HR during left coronary arteriography (p=0.8), right coronary arteriography (p=0.9), and left ventriculography (p=0.8). In patients undergoing IA-DSA, no differences between CM were noted for effects on mean HR after the first injection (p=0.6) or across the first 4 injections (p=0.2). No significant differences (p>0.05) were noted in terms of effects on arterial BP in either study or on LV pressures in patients undergoing CA. Non-serious AE considered possibly CM-related (primarily headache and events affecting the cardiovascular and digestive systems) were reported more frequently by patients undergoing CA and more frequently after iodixanol (14/60 [23.3%] and 2/47 [4.3%]; CA and IA-DSA, respectively) than iomeprol (10/60 [16.7%] and 1/49 [2%], respectively). CONCLUSIONS: Iomeprol and iodixanol are safe and have equally negligible effects on HR and LV pressures or arterial BP during and after selective intra-cardiac injection and peripheral IA-DSA. CLINICAL APPLICATION: Iomeprol and iodixanol are safe and equally well tolerated with regard to cardiac rhythm and clinical preference should be based on diagnostic image quality alone.
Resumo:
Many preanalytical variables affect the results of coagulation assays. A possible way to control some of them would be to accept blood specimens shipped in the original collection tube. The aim of our study was to investigate the stability of coagulation assays in citrated whole blood transported at ambient temperature for up to two days after specimen collection. Blood samples from 59 patients who attended our haematology outpatient ward for thrombophilia screening were transported at ambient temperature (outdoor during the day, indoor overnight) for following periods of time: <1 hour, 4-6, 8-12, 24-28 and 48-52 hours prior to centrifugation and plasma-freezing. The following coagulation tests were performed: PT, aPTT, fibrinogen, FII:C, FV:C, FVII:C, FVIII:C, FIX:C, FX:C, FXI:C, VWF:RCo, VWF:Ag, AT, PC activity, total and free PS antigen, modified APC-sensitivity-ratio, thrombin-antithrombin-complex and D-dimer. Clinically significant changes, defined as a percentage change of more than 10% from the initial value, were observed for FV:C, FVIII:C and total PS antigen starting at 24-28 hours, and for PT, aPTT and FVII:C at 48-52 hours. No statistically significant differences were seen for fibrinogen, antithrombin, or thrombin-antithrombin complexes (Friedman repeated measures analysis of variance). The present data suggest that the use of whole blood samples transported at ambient temperature may be an acceptable means of delivering specimens for coagulation analysis. With the exception of factor V and VIII coagulant activity, and total PS antigen all investigated parameters can be measured 24-28 hours after specimen collection without observing clinically relevant changes.
Resumo:
During therapeutic hyperbaric oxygenation lymphocytes are exposed to high partial pressures of oxygen. This study aimed to analyze the mechanism of apoptosis induction by hyperbaric oxygen. For intervals of 0.5-4 h Jurkat-T-cells were exposed to ambient air or oxygen atmospheres at 1-3 absolute atmospheres. Apoptosis was analyzed by phosphatidylserine externalization, caspase-3 activation and DNA-fragmentation using flow cytometry. Apoptosis was already induced after 30 min of hyperbaric oxygenation (HBO, P < 0.05). The death receptor Fas was downregulated. Inhibition of caspase-9 but not caspase-8 blocked apoptosis induction by HBO. Hyperbaric oxygen caused a loss of mitochondrial membrane potential and caspase-9 induction. The mitochondrial pro-survival protein Bcl-2 was upregulated, and antagonizing Bcl-2 function potentiated apoptosis induction by HBO. In conclusion, a single exposure to hyperbaric oxygenation induces lymphocyte apoptosis by a mitochondrial and not a Fas-related mechanism. Regulation of Fas and Bcl-2 may be regarded as protective measures of the cell in response to hyperbaric oxygen.
Ambient vertical flow in long-screen wells: a case study in the Fontainebleau Sands Aquifer (France)
Resumo:
The scaphoid is the most frequently fractured carpal bone. When investigating fixation stability, which may influence healing, knowledge of forces and moments acting on the scaphoid is essential. The aim of this study was to evaluate cartilage contact forces acting on the intact scaphoid in various functional wrist positions using finite element modeling. A novel methodology was utilized as an attempt to overcome some limitations of earlier studies, namely, relatively coarse imaging resolution to assess geometry, assumption of idealized cartilage thicknesses and neglected cartilage pre-stresses in the unloaded joint. Carpal bone positions and articular cartilage geometry were obtained independently by means of high resolution CT imaging and incorporated into finite element (FE) models of the human wrist in eight functional positions. Displacement driven FE analyses were used to resolve inter-penetration of cartilage layers, and provided contact areas, forces and pressure distribution for the scaphoid bone. The results were in the range reported by previous studies. Novel findings of this study were: (i) cartilage thickness was found to be heterogeneous for each bone and vary considerably between carpal bones; (ii) this heterogeneity largely influenced the FE results and (iii) the forces acting on the scaphoid in the unloaded wrist were found to be significant. As major limitations, accuracy of the method was found to be relatively low, and the results could not be compared to independent experiments. The obtained results will be used in a following study to evaluate existing and recently developed screws used to fix scaphoid fractures.
Resumo:
The 222Radon tracer method is a powerful tool to estimate local and regional surface emissions of, e.g., greenhouse gases. In this paper we demonstrate that in practice, the method as it is commonly used, produces inaccurate results in case of nonhomogeneously spread emission sources, and we propose a different approach to account for this. We have applied the new methodology to ambient observations of CO2 and 222Radon to estimate CO2 surface emissions for the city of Bern, Switzerland. Furthermore, by utilizing combined measurements of CO2 and δ(O2/N2) we obtain valuable information about the spatial and temporal variability of the main emission sources. Mean net CO2 emissions based on 2 years of observations are estimated at (11.2 ± 2.9) kt km−2 a−1. Oxidative ratios indicate a significant influence from the regional biosphere in summer/spring and fossil fuel combustion processes in winter/autumn. Our data indicate that the emissions from fossil fuels are, to a large degree, related to the combustion of natural gas which is used for heating purposes.