56 resultados para Alpha(6) Integrin
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Zolpidem is a positive allosteric modulator of GABA(A) receptors with sensitivity to subunit composition. While it acts with high affinity and efficacy at GABA(A) receptors containing the alpha(1) subunit, it has a lower affinity to GABA(A) receptors containing alpha(2), alpha(3), or alpha(5) subunits and has a very weak efficacy at receptors containing the alpha(5) subunit. Here, we show that replacing histidine in position 105 in the alpha(5) subunit by cysteine strongly stimulates the effect of zolpidem in receptors containing the alpha(5) subunit. The side chain volume of the amino acid residue in this position does not correlate with the modulation by zolpidem. Interestingly, serine is not able to promote the potentiation by zolpidem. The homologous residues to alpha(5)H105 in alpha(1), alpha(2), and alpha(3) are well-known determinants of the action of classical benzodiazepines. Other studies have shown that replacement of these histidines alpha(1)H101, alpha(2)H101, and alpha(3)H126 by arginine, as naturally present in alpha(4) and alpha(6), leads to benzodiazepine insensitivity of these receptors. Thus, the nature of the amino acid residue in this position is not only crucial for the action of classical benzodiazepines but in alpha(5) containing receptors also for the action of zolpidem.
Resumo:
Naive T cells are migratory cells that continuously recirculate between blood and lymphoid tissues. Antigen-specific stimulation of T cells within the lymph nodes reprograms the trafficking properties of T cells by inducing a specific set of adhesion molecules and chemokine receptors on their surface which allow these activated and effector T cells to effectively and specifically home to extralymphoid organs. The observations of organ-specific homing of T cells initiated the development of therapeutic strategies targeting adhesion receptors for organ-specific inhibition of chronic inflammation. As most adhesion receptors have additional immune functions besides mediating leukocyte trafficking, these drugs may have additional immunomodulatory effects. Therapeutic targeting of T-cell trafficking to the central nervous system is the underlying concept of a novel treatment of relapsing remitting multiple sclerosis with the humanized anti-alpha-4-integrin antibody natalizumab. In this chapter, we describe a possible preclinical in vivo approach to directly visualize the therapeutic efficacy of a given drug in inhibiting T-cell homing to a certain organ at the example of the potential of natalizumab to inhibit the trafficking of human T cells to the inflamed central nervous system in an animal model of multiple sclerosis.
Resumo:
delta subunit-containing gamma-aminobutyric acid, type A (GABA(A))receptors are expressed extrasynaptically and mediate tonic inhibition. In cerebellar granule cells, they often form receptors together with alpha(1) and/or alpha(6) subunits. We were interested in determining the architecture of receptors containing both subunits. We predefined the subunit arrangement of several different GABA(A) receptor pentamers by concatenation. These receptors composed of alpha(1), alpha(6), beta(3), and delta subunits were expressed in Xenopus oocytes. Currents elicited in response to GABA were determined in the presence and absence of 3alpha,21-dihydroxy-5alpha-pregnan-20-one (THDOC) or ethanol, or currents were elicited by 4,5,6,7-tetrahydroisoxazolo[5,4-c]-pyridin-3-ol (THIP). Several subunit configurations formed active channels. We therefore conclude that delta can assume multiple positions in a receptor pentamer made up of alpha(1), alpha(6), beta(3), and delta subunits. The different receptors differ in their functional properties. Functional expression of one receptor type was only evident in the combined presence of the neurosteroid THDOC with the channel agonist GABA. Most, but not all, receptors active with GABA/THDOC responded to THIP. None of the receptors was modulated by ethanol concentrations up to 30 mm. Several observations point to a preferred position of delta subunits between two alpha subunits in alpha(1)alpha(6)beta(3)delta receptors. This property is shared by alpha(1)beta(3)delta and alpha(6)beta(3)delta receptors, but there are differences in the additionally expressed isoforms.
Resumo:
Classical benzodiazepines, for example diazepam, interact with alpha(x)beta(2)gamma(2) GABA(A) receptors, x = 1, 2, 3, 5. Little is known about effects of alpha subunits on the structure of the binding pocket. We studied here the interaction of the covalently reacting diazepam analog 7-Isothiocyanato-5-phenyl-1,3-dihydro-2H-1,4-benzodiazepin-2-one (NCS compound) with alpha(1)H101Cbeta(2)gamma(2) and with receptors containing the homologous mutation, alpha(2)H101Cbeta(2)gamma(2), alpha(3)H126Cbeta(2)gamma(2) and alpha(5)H105Cbeta(2)gamma(2). This comparison was extended to alpha(6)R100Cbeta(2)gamma(2) receptors as this mutation conveys to these receptors high affinity towards classical benzodiazepines. The interaction was studied at the ligand binding level and at the functional level using electrophysiological techniques. Results indicate that the geometry of alpha(6)R100Cbeta(2)gamma(2) enables best interaction with NCS compound, followed by alpha(3)H126Cbeta(2)gamma(2), alpha(1)H101Cbeta(2)gamma(2) and alpha(2)H101Cbeta(2)gamma(2), while alpha(5)H105Cbeta(2)gamma(2) receptors show little interaction. Our results allow conclusions about the relative apposition of alpha(1)H101 and homologous positions in alpha(2), alpha(3), alpha(5) and alpha(6) with the position occupied by -Cl in diazepam. During this study we found evidence for the presence of a novel site for benzodiazepines that prevents modulation of GABA(A) receptors via the classical benzodiazepine site. The novel site potentially contributes to the high degree of safety to some of these drugs. Our results indicate that this site may be located at the alpha/beta subunit interface pseudo-symmetrically to the site for classical benzodiazepines located at the alpha/gamma interface.
Resumo:
In 1992, it was shown that monoclonal antibodies blocking alpha(4)-integrins prevent the development of experimental autoimmune encephalomyelitis, an animal model for multiple sclerosis (MS). As alpha(4)beta(1)-integrin was demonstrated to mediate the attachment of immune-competent cells to inflamed brain endothelium in experimental autoimmune encephalomyelitis, the therapeutic effect was attributed to the inhibition of immune cell extravasation and inflammation in the central nervous system. This novel therapeutic approach was rapidly and successfully translated into the clinic. The humanized anti-alpha(4)-integrin antibody natalizumab demonstrated an unequivocal therapeutic effect in preventing relapses and slowing down the pace of neurological deterioration in patients with relapsing-remitting MS in phase II and phase III clinical trials. The occurrence of 3 cases of progressive multifocal leukoencephalopathy in patients treated with natalizumab led to the voluntary withdrawal of the drug from the market. After a thorough safety evaluation of all patients receiving this drug in past and ongoing studies for MS and Crohn's disease, natalizumab again obtained approval in the US and the European Community. A treatment targeting leukocyte trafficking in MS has now re-entered the clinic. Further thorough evaluation is necessary for a better understanding of the risk-benefit balance of this new treatment option for relapsing MS. In this review, we discuss the basic mechanism of action, key clinical results of clinical trials and the emerging indication of natalizumab in MS.
Resumo:
Many membrane proteins, including the GABA(A) [GABA (gamma-aminobutyric acid) type A] receptors, are oligomers often built from different subunits. As an example, the major adult isoform of the GABA(A) receptor is a pentamer built from three different subunits. Theoretically, co-expression of three subunits may result in many different receptor pentamers. Subunit concatenation allows us to pre-define the relative arrangement of the subunits. This method may thus be used to study receptor architecture, but also the nature of binding sites. Indeed, it made possible the discovery of a novel benzodiazepine site. We use here subunit concatenation to study delta-subunit-containing GABA(A) receptors. We provide evidence for the formation of different functional subunit arrangements in recombinant alpha(1)beta(3)delta and alpha(6)beta(3)delta receptors. As with all valuable techniques, subunit concatenation has also some pitfalls. Most of these can be avoided by carefully titrating and minimizing the length of the linker sequences joining the two linked subunits and avoiding inclusion of the signal sequence of all but the N-terminal subunit of a multi-subunit construct. Maybe the most common error found in the literature is that low expression can be overcome by simply overloading the expression system with genetic information. As some concatenated constructs result by themselves in a low level of expression, this erroneous assembly leading to receptor function may be promoted by overloading the expression system and leads to wrong conclusions.
Resumo:
Delta (delta) subunit containing GABA(A) receptors are expressed extra-synaptically and mediate tonic inhibition. In cerebellar granule cells, they often form a receptor together with alpha(6) subunits. We were interested to determine the architecture of these receptors. We predefined the subunit arrangement of 24 different GABA(A) receptor pentamers by subunit concatenation. These receptors (composed of alpha(6), beta(3) and delta subunits) were expressed in Xenopus oocytes and their electrophysiological properties analyzed. Currents elicited in response to GABA were determined in presence and absence of 3alpha, 21-dihydroxy-5alpha-pregnan-20-one and to 4,5,6,7-tetrahydroisoxazolo[5,4-c]-pyridin-3-ol. alpha(6)-beta(3)-alpha(6)/delta receptors showed a substantial response to GABA alone. Three receptors, beta(3)-alpha(6)-delta/alpha(6)-beta(3), alpha(6)-beta(3)-alpha(6)/beta(3)-delta and beta(3)-delta-beta(3)/alpha(6)-beta(3), were only uncovered in the combined presence of the neurosteroid 3alpha, 21-dihydroxy-5alpha-pregnan-20-one with GABA. All four receptors were activated by 4,5,6,7-tetrahydroisoxazolo[5,4-c]-pyridin-3-ol. None of the functional receptors was modulated by physiological concentrations (up to 30 mM) of ethanol. GABA concentration response curves indicated that the delta subunit can contribute to the formation of an agonist site. We conclude from the investigated receptors that the delta subunit can assume multiple positions in a receptor pentamer composed of alpha(6), beta(3) and delta subunits.
Resumo:
The humanized anti-alpha(4) integrin Ab Natalizumab is an effective treatment for relapsing-remitting multiple sclerosis. Natalizumab is thought to exert its therapeutic efficacy by blocking the alpha(4) integrin-mediated binding of circulating immune cells to the blood-brain barrier (BBB). As alpha(4) integrins control other immunological processes, natalizumab may, however, execute its beneficial effects elsewhere. By means of intravital microscopy we demonstrate that natalizumab specifically inhibits the firm adhesion but not the rolling or capture of human T cells on the inflamed BBB in mice with acute experimental autoimmune encephalomyelitis (EAE). The efficiency of natalizumab to block T cell adhesion to the inflamed BBB was found to be more effective in EAE than in acute systemic TNF-alpha-induced inflammation. Our data demonstrate that alpha(4) integrin-mediated adhesion of human T cells to the inflamed BBB during EAE is efficiently blocked by natalizumab and thus provide the first direct in vivo proof of concept of this therapy in multiple sclerosis.
Resumo:
BACKGROUND The number of cells positive for the α-6 and α-2 integrin subunits and the c-Met receptor in primary tumors and bone biopsies from prostate cancer patients has been correlated with metastasis and disease progression. The objective of this study was to quantify disseminated tumour cells present in bone marrow in prostate cancer patients using specific markers and determine their correlation with metastasis and survival. METHODS Patients were included at different stage of prostate cancer disease, from localised to metastatic castration-resistant prostate cancer. Healthy men were used as a control group. Bone marrow samples were collected and nucleated cells separated. These were stained for CD45, α-2, α-6 integrin subunits and c-Met and samples were processed for analysis and quantification of CD45-/α2+/α6+/c-met + cells using flow cytometry. Clinical and pathological parameters were assessed and survival measured. Statistical analyses were made of associations between disease specific parameters, bone marrow flow cytometry data, prostate-specific antigen (PSA) progression free survival and bone metastases progression free survival. RESULTS For all markers, the presence of more than 0.1% positive cells in bone marrow aspirates was significantly associated with the risk of biochemical progression, the risk of developing metastasis and death from prostate cancer. CONCLUSIONS Quantification of cells carrying putative stem cell markers in bone marrow is a potential indicator of disease progression. Functional studies on isolated cells are needed to show more specifically their property for metastatic spread in prostate cancer.
Resumo:
BACKGROUND: Oxidized low density lipoprotein (oxLDL) has been shown to induce apoptosis and senescence of endothelial progenitor cells (EPC). In the present study, we hypothesized that even sub-apoptotic concentrations of oxLDL impair the angiogenic potential of EPC and investigated if this effect is mediated by affecting adhesion and incorporation. METHODS: A co-culture system of human microvascular endothelial cells and EPC was used to study the effect of sub-apoptotic concentrations of native (nLDL) and oxLDL on cell-cell interaction. The expression and the functional role of angiogenic adhesion molecules and integrins was monitored by FACS and neutralizing assay, respectively. RESULTS: We observed an inhibition of tube formation and impairment of EPC integration into the vascular network of mature endothelial cells by oxLDL. In contrast, nLDL did not affect angiogenic properties of EPC. Incubation of EPC with sub-apoptotic oxLDL concentrations significantly decreased E-selectin and integrin alpha(v)beta(5) expression (37.6% positive events vs. 71.5% and 24.3% vs. 49.9% compared to control culture media without oxLDL). Interestingly, expression of alpha(v)beta(3), VE-cadherin and CD31 remained unchanged. Blocking of E-selectin and integrin alpha(v)beta(5) by neutralizing antibody effectively inhibited adhesion of EPC to differentiated endothelial cells (56.5% and 41.9% of control; p<0.001). CONCLUSION: In conclusion, oxidative alteration of LDL impairs angiogenic properties of EPC at sub-apoptotic levels by downregulation of E-selectin and integrin alpha(v)beta(5), both substantial mediators of EPC-endothelial cell interaction.
Resumo:
The production of epithelial neutrophil activating peptide-78 (NA-78) and the interleukins IL-8 and IL-6 by endometrial stromal cells is stimulated by pro-inflammatory interleukin-1 (IL-1) and tumour necrosis factor-α (TNF-α). IL-8 is suggested to play a role in the pathogenesis of endometriosis, and in these women the peritoneal fluid concentrations of ENA-78 and IL-8 are increased. TNF-α has been tested together with interferon-γ because of their cooperative stimulation of IL-6. The release of IL-8, however, is inhibited with increasing interferon levels. The aim of the study was the analysis of the production of ENA-78, IL-6 and IL-8 by cultured human endometrial stromal cells in the presence of varying concentrations of IL-1β, TNF-α, and interferon-γ.
Resumo:
Two novel bicyclo-T nucleosides carrying a hydroxyl or a carboxymethyl substituent in C(6')-[alpha]-position were prepared and incorporated into oligodeoxynucleotides. During oligonucleotide deprotection the carboxymethyl substituent was converted into different amide substituents in a parallel way. Tm-measurements showed no dramatic differences in both, thermal affinity and mismatch discrimination, compared to unmodified oligonucleotides. The post-synthetic modification of the carboxymethyl substituent allows in principle for a parallel preparation of a library of oligonucleotides carrying diverse substituents at C(6'). In addition, functional groups can be placed into unique positions in a DNA double helix.
Resumo:
Inflammatory reactions involve a network of chemical and molecular signals that initiate and maintain host response. In inflamed tissue, immune system cells generate opioid peptides that contribute to potent analgesia by acting on specific peripheral sensory neurons. In this study, we show that opioids also modulate immune cell function in vitro and in vivo. By binding to its specific receptor, the opioid receptor-specific ligand DPDPE triggers monocyte adhesion. Integrins have a key role in this process, as adhesion is abrogated in cells treated with specific neutralizing anti-alpha5beta1 integrin mAb. We found that DPDPE-triggered monocyte adhesion requires PI3Kgamma activation and involves Src kinases, the guanine nucleotide exchange factor Vav-1, and the small GTPase Rac1. DPDPE also induces adhesion of pertussis toxin-treated cells, indicating involvement of G proteins other than Gi. These data show that opioids have important implications in regulating leukocyte trafficking, adding a new function to their known effects as immune response modulators.
Resumo:
Blockade of cytokines, particularly of tumour necrosis factor alpha (TNF-alpha), in immuno-inflammatory diseases, has led to the greatest advances in medicine of recent years. We did a thorough review of the literature with a focus on inflammation models in rodents on modified gene expression or bioactivity for IL-1, IL-6, and TNF-alpha, and we summarized the results of randomized controlled clinical trials in human disease. What we have learned herewith is that important information can be achieved by the use of animal models in complex, immune-mediated diseases. However, a clear ranking for putative therapeutic targets appears difficult to obtain from an experimental approach alone. This is primarily due to the fact that none of the disease models has proven to cover more than one crucial pathogenetic aspect of the complex cascade of events leading to characteristic clinical disease signs and symptoms. This supports the notion that the addressed human immune-mediated diseases are polygenic and the summation of genetic, perhaps epigenetic, and environmental factors. Nevertheless, it has become apparent, so far, that TNF-alpha is of crucial importance in the development of antigen-dependent and antigen-independent models of inflammation, and that these results correlate well with clinical success. With some delay, clinical trials in conditions having some relationship with rheumatoid arthritis (RA) indicate new opportunities for blocking IL-1 or IL-6 therapeutically. It appears, therefore, that a translational approach with critical, mutual reflection of simultaneously performed experiments and clinical trials is important for rapid identification of new targets and development of novel treatment options in complex, immune-mediated, inflammatory diseases.