11 resultados para All-optical networks
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Abstract Cloud computing service emerged as an essential component of the Enterprise {IT} infrastructure. Migration towards a full range and large-scale convergence of Cloud and network services has become the current trend for addressing requirements of the Cloud environment. Our approach takes the infrastructure as a service paradigm to build converged virtual infrastructures, which allow offering tailored performance and enable multi-tenancy over a common physical infrastructure. Thanks to virtualization, new exploitation activities of the physical infrastructures may arise for both transport network and Data Centres services. This approach makes network and Data Centres’ resources dedicated to Cloud Computing to converge on the same flexible and scalable level. The work presented here is based on the automation of the virtual infrastructure provisioning service. On top of the virtual infrastructures, a coordinated operation and control of the different resources is performed with the objective of automatically tailoring connectivity services to the Cloud service dynamics. Furthermore, in order to support elasticity of the Cloud services through the optical network, dynamic re-planning features have been provided to the virtual infrastructure service, which allows scaling up or down existing virtual infrastructures to optimize resource utilisation and dynamically adapt to users’ demands. Thus, the dynamic re-planning of the service becomes key component for the coordination of Cloud and optical network resource in an optimal way in terms of resource utilisation. The presented work is complemented with a use case of the virtual infrastructure service being adopted in a distributed Enterprise Information System, that scales up and down as a function of the application requests.
Resumo:
The evolution of the Next Generation Networks, especially the wireless broadband access technologies such as Long Term Evolution (LTE) and Worldwide Interoperability for Microwave Access (WiMAX), have increased the number of "all-IP" networks across the world. The enhanced capabilities of these access networks has spearheaded the cloud computing paradigm, where the end-users aim at having the services accessible anytime and anywhere. The services availability is also related with the end-user device, where one of the major constraints is the battery lifetime. Therefore, it is necessary to assess and minimize the energy consumed by the end-user devices, given its significance for the user perceived quality of the cloud computing services. In this paper, an empirical methodology to measure network interfaces energy consumption is proposed. By employing this methodology, an experimental evaluation of energy consumption in three different cloud computing access scenarios (including WiMAX) were performed. The empirical results obtained show the impact of accurate network interface states management and application network level design in the energy consumption. Additionally, the achieved outcomes can be used in further software-based models to optimized energy consumption, and increase the Quality of Experience (QoE) perceived by the end-users.
Resumo:
Recent studies of Schwinger pair production have demonstrated that the asymptotic particle spectrum is extremely sensitive to the applied field profile. We extend the idea of the dynamically assisted Schwinger effect from single pulse profiles to more realistic field configurations to be generated in an all-optical experiment searching for pair creation. We use the quantum kinetic approach to study the particle production and employ a multi-start method, combined with optimal control theory, to determine a set of parameters for which the particle yield in the forward direction in momentum space is maximized. We argue that this strategy can be used to enhance the signal of pair production on a given detector in an experimental setup.
Resumo:
Aims To compare the tissue coverage of a hydrophilic polymer-coated zotarolimus-eluting stent (ZES) vs. a fluoropolymer-coated everolimus-eluting stent (EES) at 13 months, using optical coherence tomography (OCT) in an ‘all-comers' population of patients, in order to clarify the mechanism of eventual differences in the biocompatibility and thrombogenicity of the devices. Methods and results Patients randomized to angiographic follow-up in the RESOLUTE All Comers trial (NCT00617084) at pre-specified OCT sites underwent OCT follow-up at 13 months. Tissue coverage and apposition were assessed strut by strut, and the results in both treatment groups were compared using multilevel logistic or linear regression, as appropriate, with clustering at three different levels: patient, lesion, and stent. Fifty-eight patients (30 ZES and 28 EES), 72 lesions, 107 stents, and 23 197 struts were analysed. Eight hundred and eighty-seven and 654 uncovered struts (7.4 and 5.8%, P= 0.378), and 216 and 161 malapposed struts (1.8 and 1.4%, P= 0.569) were found in the ZES and EES groups, respectively. The mean thickness of coverage was 116 ± 99 µm in ZES and 142 ± 113 µm in EES (P= 0.466). No differences in per cent neointimal volume obstruction (12.5 ± 7.9 vs. 15.0 ± 10.7%) or other areas–volumetric parameters were found between ZES and EES, respectively. Conclusion No significant differences in tissue coverage, malapposition, or lumen/stent areas and volumes were detected by OCT between the hydrophilic polymer-coated ZES and the fluoropolymer-coated EES at 13-month follow-up.
Resumo:
Background: fMRI Resting State Networks (RSNs) have gained importance in the present fMRI literature. Although their functional role is unquestioned and their physiological origin is nowadays widely accepted, little is known about their relationship to neuronal activity. The combined recording of EEG and fMRI allows the temporal correlation between fluctuations of the RSNs and the dynamics of EEG spectral amplitudes. So far, only relationships between several EEG frequency bands and some RSNs could be demonstrated, but no study accounted for the spatial distribution of frequency domain EEG. Methodology/Principal Findings: In the present study we report on the topographic association of EEG spectral fluctuations and RSN dynamics using EEG covariance mapping. All RSNs displayed significant covariance maps across a broad EEG frequency range. Cluster analysis of the found covariance maps revealed the common standard EEG frequency bands. We found significant differences between covariance maps of the different RSNs and these differences depended on the frequency band. Conclusions/Significance: Our data supports the physiological and neuronal origin of the RSNs and substantiates the assumption that the standard EEG frequency bands and their topographies can be seen as electrophysiological signatures of underlying distributed neuronal networks.
Resumo:
Three-dimensional rotational X-ray imaging with the SIREMOBIL Iso-C3D (Siemens AG, Medical Solutions, Erlangen, Germany) has become a well-established intra-operative imaging modality. In combination with a tracking system, the Iso-C3D provides inherently registered image volumes ready for direct navigation. This is achieved by means of a pre-calibration procedure. The aim of this study was to investigate the influence of the tracking system used on the overall navigation accuracy of direct Iso-C3D navigation. Three models of tracking system were used in the study: Two Optotrak 3020s, a Polaris P4 and a Polaris Spectra system, with both Polaris systems being in the passive operation mode. The evaluation was carried out at two different sites using two Iso-C3D devices. To measure the navigation accuracy, a number of phantom experiments were conducted using an acrylic phantom equipped with titanium spheres. After scanning, a special pointer was used to pinpoint these markers. The difference between the digitized and navigated positions served as the accuracy measure. Up to 20 phantom scans were performed for each tracking system. The average accuracy measured was 0.86 mm and 0.96 mm for the two Optotrak 3020 systems, 1.15 mm for the Polaris P4, and 1.04 mm for the Polaris Spectra system. For the Polaris systems a higher maximal error was found, but all three systems yielded similar minimal errors. On average, all tracking systems used in this study could deliver similar navigation accuracy. The passive Polaris system showed ? as expected ? higher maximal errors; however, depending on the application constraints, this might be negligible.
Resumo:
The Advanced Very High Resolution Radiometer (AVHRR) carried on board the National Oceanic and Atmospheric Administration (NOAA) and the Meteorological Operational Satellite (MetOp) polar orbiting satellites is the only instrument offering more than 25 years of satellite data to analyse aerosols on a daily basis. The present study assessed a modified AVHRR aerosol optical depth τa retrieval over land for Europe. The algorithm might also be applied to other parts of the world with similar surface characteristics like Europe, only the aerosol properties would have to be adapted to a new region. The initial approach used a relationship between Sun photometer measurements from the Aerosol Robotic Network (AERONET) and the satellite data to post-process the retrieved τa. Herein a quasi-stand-alone procedure, which is more suitable for the pre-AERONET era, is presented. In addition, the estimation of surface reflectance, the aerosol model, and other processing steps have been adapted. The method's cross-platform applicability was tested by validating τa from NOAA-17 and NOAA-18 AVHRR at 15 AERONET sites in Central Europe (40.5° N–50° N, 0° E–17° E) from August 2005 to December 2007. Furthermore, the accuracy of the AVHRR retrieval was related to products from two newer instruments, the Medium Resolution Imaging Spectrometer (MERIS) on board the Environmental Satellite (ENVISAT) and the Moderate Resolution Imaging Spectroradiometer (MODIS) on board Aqua/Terra. Considering the linear correlation coefficient R, the AVHRR results were similar to those of MERIS with even lower root mean square error RMSE. Not surprisingly, MODIS, with its high spectral coverage, gave the highest R and lowest RMSE. Regarding monthly averaged τa, the results were ambiguous. Focusing on small-scale structures, R was reduced for all sensors, whereas the RMSE solely for MERIS substantially increased. Regarding larger areas like Central Europe, the error statistics were similar to the individual match-ups. This was mainly explained with sampling issues. With the successful validation of AVHRR we are now able to concentrate on our large data archive dating back to 1985. This is a unique opportunity for both climate and air pollution studies over land surfaces.
Resumo:
Reticulate pattern is one of the most important dermatological signs of a pathological process involving the superficial vascular networks. Vascular malformations, such as cutis marmorata congenita telangiectasia and benign forms of livedo reticularis, and sinister conditions, such as meningococcal meningitis or Sneddon's syndrome, can all present with a reticulate pattern. The clinical presentation and morphology is determined by the nature and extent of the underlying pathology and the involvement of a particular vascular network. This review has been divided into four instalments. In the present paper, we discuss the anatomy and physiology of the complex network of vascular structures that support the function of the skin and subcutis.
Resumo:
Background/Aims: To evaluate the alterations of mean foveal thickness (MFT) and visual acuity (VA) outcomes after uncomplicated cataract surgery in different groups of patients. Methods: This study included eyes of consecutive patients who underwent cataract surgery between November 2007 and June 2009. The patients included in the study were divided into 4 groups, as follows: history-free patients, patients with diabetes mellitus without macular involvement at baseline, patients with glaucoma, and patients with epiretinal membrane (ERM). Preoperatively and at 1, 3 and 6 months postoperatively, patients were evaluated for MFT by optical coherence tomography at the central 1-mm macular zone and for logarithm of the minimum angle of resolution best spectacle-corrected VA (BSCVA). Results: A total of 202 eyes were included in the study. MFT values demonstrated a statistically significant increase (p < 0.01) after cataract surgery in all groups at the first and third postoperative month. The history-free (p = 0.09) and glaucoma (p = 0.19) groups did not demonstrate a statistically significant difference in MFT values between the preoperative and 6-month measurements. MFT values 6 months after cataract surgery in the diabetes and ERM groups remained significantly higher (p < 0.01). Despite these findings, VA increased significantly (p < 0.01) in all groups at all postoperative follow-ups. Conclusions: MFT values increased significantly in all groups at the first and third months after cataract surgery. At 6 months, MFT values returned to preoperative levels in the history-free and glaucoma patients, while they remained significantly higher in the diabetic and ERM patients. Despite these macular alterations, BSCVA improved significantly after cataract surgery in all groups at all postoperative follow-ups.
Resumo:
A series of dicyanobiphenyl-cyclophanes 1-6 with various pi-backbone conformations and characteristic n-type semiconductor properties is presented. Their synthesis, optical, structural, electrochemical, spectroelectrochemical, and packing properties are investigated. The X-ray crystal structures of all n-type rods allow the systematic correlation of structural features with physical properties. In addition, the results are supported by quantum mechanical calculations based on density functional theory. A two-step reduction process is observed for all n-type rods, in which the first step is reversible. The potential gap between the reduction processes depends linearly on the cos(2) value of the torsion angle phi between the pi-systems. Similarly, optical absorption spectroscopy shows that the vertical excitation energy of the conjugation band correlates with the cos(2) value of the torsion angle phi. These correlations demonstrate that the fixed intramolecular torsion angle phi is the dominant factor determining the extent of electron delocalization in these model compounds, and that the angle phi measured in the solid-state structure is a good proxy for the molecular conformation in solution. Spectroelectrochemical investigations demonstrate that conformational rigidity is maintained even in the radical anion form. In particular, the absorption bands corresponding to the SOMO-LUMO+i transitions are shifted bathochromically, whereas the absorption bands corresponding to the HOMO-SOMO transition are shifted hypsochromically with increasing torsion angle phi.