35 resultados para Alkaline antigens
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
An immunoassay (double-antibody-sandwich-ELISA) was developed to detect circulating antigens (CAg) in patients with cystic (Echinococcus granulosus) echinococcosis. Echinococcus antigens derived from heterologous intermediate hosts were used to immunize rabbits and to purify the rabbit-IgG-fraction obtained by affinity-chromatography, thus avoiding major interference with host components. The purified rabbit anti-hydatid IgG was immunosorbed with bovine and human sera. One part of the resulting IgG served as coating agent in a double antibody sandwich-ELISA; the other part, coupled to alkaline phosphatase, as detecting conjugate. The specificity of the antibody reaction was demonstrated by immunoelectrophoresis. Sera of 21 patients with cystic echinococcosis were examined with this test system. In seven of the patients' sera CAg were detected in concentrations ranging between 310 ng and 680 ng protein per ml serum. Comparing pre- and postoperative serum samples obtained from nine patients operated on for cystic echinococcosis, four sera were found to be CAg-positive before and three after operation.
Resumo:
The enzyme tissue non-specific alkaline phosphatase (TNAP) belongs to the ectophosphatase family. It is present in large amounts in bone in which it plays a role in mineralization but little is known about its function in other tissues. Arguments are accumulating for its involvement in the brain, in particular in view of the neurological symptoms accompanying human TNAP deficiencies. We have previously shown, by histochemistry, alkaline phosphatase (AP) activity in monkey brain vessels and parenchyma in which AP exhibits specific patterns. Here, we clearly attribute this activity to TNAP expression rather than to other APs in primates (human and marmoset) and in rodents (rat and mouse). We have not found any brain-specific transcripts but our data demonstrate that neuronal and endothelial cells exclusively express the bone TNAP transcript in all species tested, except in mouse neurons in which liver TNAP transcripts have also been detected. Moreover, we highlight the developmental regulation of TNAP expression; this also acts during neuronal differentiation. Our study should help to characterize the regulation of the expression of this ectophosphatase in various cell types of the central nervous system.
Resumo:
Polyvalent Ig preparations, derived from the pooled plasma of thousands of healthy donors, contain a complex mix of both 'acquired' and natural antibodies directed against pathogens as well as foreign and self/auto antigens (Ag). Depending on their formulation, donor pool size, etc., liquid Ig preparations contain monomeric and dimeric IgG. The dimeric IgG fraction is thought to represent mainly idiotype-antiidiotype Ab pairs. Treatment of all IgG fractions at pH 4 effectively monomerizes the IgG dimers resulting in separated idiotype-antiidiotype Ab pairs and thus in a comparable F(ab')(2) binding site availability of the different IgG fractions. Previously, we identified an increased anti-self-reactivity within the monomerized dimer fraction. This study addressed if, among the different IgG fractions, an analogous preferential reactivity was evident in the response against different pathogen-derived protein and carbohydrate antigens. Therefore, we assessed the activity of total unseparated IgG, the monomeric and dimeric IgG fractions against antigenic structures of bacterial and viral antigens/virulence factors. All fractions showed similar reactivity to protein antigens except for exotoxin A of Pseudomonas aeruginosa, where the dimeric fraction, especially when monomerized, showed a marked increase in reactivity. This suggests that the production of antiidiotypic IgG antibodies contributes to controlling the immune response to certain categories of pathogens. In contrast, the monomeric IgG fractions showed increased reactivity towards pathogen-associated polysaccharides, classically regarded as T-independent antigens. Taken together, the differential reactivity of the IgG fractions seems to indicate a preferential segregation of antibody reactivities according to the nature of the antigen.
Resumo:
The immune response of mice experimentally infected with Echinococcus multilocularis metacestodes becomes impaired so as to allow parasite survival and proliferation. Our study tackled the question on how different classes of E. multilocularis antigens (crude vesicular fluid (VF); purified proteinic rec-14-3-3; purified carbohydrate Em2(G11)) are involved in the maturation process of bone-marrow-derived dendritic cells (BMDCs) and subsequent exposure to lymph node (LN) cells. In our experiments, we used BMDCs cultivated from either naïve (control) or alveolar echinococcosis (AE)-infected C57BL/6 mice. We then tested surface markers (CD80, CD86, MHC class II) and cytokine expression levels (interleukin (IL)-10, IL-12p40 and tumour necrosis factor (TNF)-α) of non-stimulated BMDCs versus BMDCs stimulated with different Em-antigens or lipopolysaccharide (LPS). While LPS and rec-14-3-3-antigen were able to induce CD80, CD86 and (to a lower extent) MHC class II surface expression, Em2(G11) and, strikingly, also VF-antigen failed to do so. Similarly, LPS and rec-14-3-3 yielded elevated IL-12, TNF-α and IL-10 expression levels, while Em2(G11) and VF-antigen didn't. When naïve BMDCs were loaded with VF-antigen, they induced a strong non-specific proliferation of uncommitted LN cells. For both, BMDCs or LN cells, isolated from AE-infected mice, proliferation was abrogated. The most striking difference, revealed by comparing naïve with AE-BMDCs, was the complete inability of LPS-stimulated AE-BMDCs to activate lymphocytes from any LN cell group. Overall, the presenting activity of BMDCs from AE-infected mice seemed to trigger unresponsiveness in T cells, especially in the case of VF-antigen stimulation, thus contributing to the suppression of clonal expansion during the chronic phase of AE infection.
Resumo:
Recombinant NcPDI(recNcPDI), NcROP2(recNcROP2), and NcMAG1(recNcMAG1) were expressed in Escherichia coli and purified, and evaluated as potential vaccine candidates by employing the C57Bl/6 mouse cerebral infection model. Intraperitoneal application of these proteins suspended in saponin adjuvants lead to protection against disease in 50% and 70% of mice vaccinated with recNcMAG1 and recNcROP2, respectively, while only 20% of mice vaccinated with recNcPDI remained without clinical signs. In contrast, a 90% protection rate was achieved following intra-nasal vaccination with recNcPDI emulsified in cholera toxin. Only 1 mouse vaccinated intra-nasally with recNcMAG1 survived the challenge infection, and protection achieved with intra-nasally applied recNcROP2 was at 60%. Determination of cerebral parasite burdens by real-time PCR showed that these were significantly reduced only in recNcROP2-vaccinated animals (following intraperitoneal and intra-nasal application) and in recNcPDI-vaccinated mice (intra-nasal application only). Quantification of viable tachyzoites in brain tissue of intra-nasally vaccinated mice showed that immunization with recNcPDI resulted in significantly decreased numbers of live parasites. These data show that, besides the nature of the antigen, the protective effect of vaccination also depends largely on the route of antigen delivery. In the case of recNcPDI, the intra-nasal route provides a platform to generate a highly protective immune response.
Resumo:
BACKGROUND: Production of native antigens for serodiagnosis of helminthic infections is laborious and hampered by batch-to-batch variation. For serodiagnosis of echinococcosis, especially cystic disease, most screening tests rely on crude or purified Echinococcus granulosus hydatid cyst fluid. To resolve limitations associated with native antigens in serological tests, the use of standardized and highly pure antigens produced by chemical synthesis offers considerable advantages, provided appropriate diagnostic sensitivity and specificity is achieved. METHODOLOGY/PRINCIPAL FINDINGS: Making use of the growing collection of genomic and proteomic data, we applied a set of bioinformatic selection criteria to a collection of protein sequences including conceptually translated nucleotide sequence data of two related tapeworms, Echinococcus multilocularis and Echinococcus granulosus. Our approach targeted alpha-helical coiled-coils and intrinsically unstructured regions of parasite proteins potentially exposed to the host immune system. From 6 proteins of E. multilocularis and 5 proteins of E. granulosus, 45 peptides between 24 and 30 amino acids in length were designed. These peptides were chemically synthesized, spotted on microarrays and screened for reactivity with sera from infected humans. Peptides reacting above the cut-off were validated in enzyme-linked immunosorbent assays (ELISA). Peptides identified failed to differentiate between E. multilocularis and E. granulosus infection. The peptide performing best reached 57% sensitivity and 94% specificity. This candidate derived from Echinococcus multilocularis antigen B8/1 and showed strong reactivity to sera from patients infected either with E. multilocularis or E. granulosus. CONCLUSIONS/SIGNIFICANCE: This study provides proof of principle for the discovery of diagnostically relevant peptides by bioinformatic selection complemented with screening on a high-throughput microarray platform. Our data showed that a single peptide cannot provide sufficient diagnostic sensitivity whereas pooling several peptide antigens improved sensitivity; thus combinations of several peptides may lead the way to new diagnostic tests that replace, or at least complement conventional immunodiagnosis of echinococcosis. Our strategy could prove useful for diagnostic developments in other pathogens.
Human leukocyte antigens (HLA) associated drug hypersensitivity: consequences of drug binding to HLA
Resumo:
Recent publications have shown that certain human leukocyte antigen (HLA) alleles are strongly associated with hypersensitivity to particular drugs. As HLA molecules are a critical element in T-cell stimulation, it is no surprise that particular HLA alleles have a direct functional role in the pathogenesis of drug hypersensitivity. In this context, a direct interaction of the relevant drug with HLA molecules as described by the p-i concept appears to be more relevant than presentation of hapten-modified peptides. In some HLA-associated drug hypersensitivity reactions, the presence of a risk allele is a necessary but incomplete factor for disease development. In carbamazepine and HLA-B*15:02, certain T-cell receptor (TCR) repertoires are required for immune activation. This additional requirement may be one of the 'missing links' in explaining why most individuals carrying this allele can tolerate the drug. In contrast, abacavir generates polyclonal T-cell response by interacting specifically with HLA-B*57:01 molecules. T cell stimulation may be due to presentation of abacavir or of altered peptides. While the presence of HLA-B*58:01 allele substantially increases the risk of allopurinol hypersensitivity, it is not an absolute requirement, suggesting that other factors also play an important role. In summary, drug hypersensitivity is the end result of a drug interaction with certain HLA molecules and TCRs, the sum of which determines whether the ensuing immune response is going to be harmful or not.
Resumo:
Infections with enterotoxigenic Escherichia coli (ETEC) are a major cause of travelers' diarrhea worldwide. Colonization of the small intestine mucosa is dependent on specific colonization factor antigens (CFA) and coli surface (CS) antigens. CFA/1, CS3, and CS6 are the most prevalent fimbrial antigens found in clinical isolates. The goal of our study was to visualize the morphology of CS3 and CS6 fimbriae in wild-type and recombinant E. coli strains by means of transmission electron microscopy in conjunction with negative staining and immunolabeling. Corresponding ETEC genes were cloned into E. coli K12 strain DH10B. Expression of fimbriae was dependent on culture conditions and sample handling. Specific immunolabeling of fimbriae unequivocally demonstrated the presence of all types of surface antigens investigated. Negative staining was effective in revealing CS3 but not CS6. In addition, this technique clearly demonstrated differences in the morphology of genetically and immunologically identical CS3 surface antigens in wild-type and recombinant strains. This paper provides a basis for the assessment of recombinant vaccines.
Resumo:
BACKGROUND: We evaluated the ability of CA15-3 and alkaline phosphatase (ALP) to predict breast cancer recurrence. PATIENTS AND METHODS: Data from seven International Breast Cancer Study Group trials were combined. The primary end point was relapse-free survival (RFS) (time from randomization to first breast cancer recurrence), and analyses included 3953 patients with one or more CA15-3 and ALP measurement during their RFS period. CA15-3 was considered abnormal if >30 U/ml or >50% higher than the first value recorded; ALP was recorded as normal, abnormal, or equivocal. Cox proportional hazards models with a time-varying indicator for abnormal CA15-3 and/or ALP were utilized. RESULTS: Overall, 784 patients (20%) had a recurrence, before which 274 (35%) had one or more abnormal CA15-3 and 35 (4%) had one or more abnormal ALP. Risk of recurrence increased by 30% for patients with abnormal CA15-3 [hazard ratio (HR) = 1.30; P = 0.0005], and by 4% for those with abnormal ALP (HR = 1.04; P = 0.82). Recurrence risk was greatest for patients with either (HR = 2.40; P < 0.0001) and with both (HR = 4.69; P < 0.0001) biomarkers abnormal. ALP better predicted liver recurrence. CONCLUSIONS: CA15-3 was better able to predict breast cancer recurrence than ALP, but use of both biomarkers together provided a better early indicator of recurrence. Whether routine use of these biomarkers improves overall survival remains an open question.
Resumo:
Fine particles (0.1-2.5 microm in diameter) may cause increased pulmonary morbidity and mortality. We demonstrate with a cell culture model of the human epithelial airway wall that dendritic cells extend processes between epithelial cells through the tight junctions to collect particles in the "luminal space" and to transport them through cytoplasmic processes between epithelial cells across the epithelium or to transmigrate through the epithelium to take up particles on the epithelial surface. Furthermore, dendritic cells interacted with particle-loaded macrophages on top of the epithelium and with other dendritic cells within or beneath the epithelium to take over particles. By comparing the cellular interplay of dendritic cells and macrophages across epithelial monolayers of different transepithelial electrical resistance, we found that more dendritic cells were involved in particle uptake in A549 cultures showing a low transepithelial electrical resistance compared with dendritic cells in16HBE14o cultures showing a high transepithelial electrical resistance 10 min (23.9% versus 9.5%) and 4 h (42.1% versus 14.6%) after particle exposition. In contrast, the macrophages in A549 co-cultures showed a significantly lower involvement in particle uptake compared with 16HBE14o co-cultures 10 min (12.8% versus 42.8%) and 4 h (57.4% versus 82.7%) after particle exposition. Hence we postulate that the epithelial integrity influences the particle uptake by dendritic cells, and that these two cell types collaborate as sentinels against foreign particulate antigen by building a transepithelial interacting cellular network.
Resumo:
ABSTRACT: BACKGROUND: Many parasitic organisms, eukaryotes as well as bacteria, possess surface antigens with amino acid repeats. Making up the interface between host and pathogen such repetitive proteins may be virulence factors involved in immune evasion or cytoadherence. They find immunological applications in serodiagnostics and vaccine development. Here we use proteins which contain perfect repeats as a basis for comparative genomics between parasitic and free-living organisms. RESULTS: We have developed Reptile http://reptile.unibe.ch, a program for proteome-wide probabilistic description of perfect repeats in proteins. Parasite proteomes exhibited a large variance regarding the proportion of repeat-containing proteins. Interestingly, there was a good correlation between the percentage of highly repetitive proteins and mean protein length in parasite proteomes, but not at all in the proteomes of free-living eukaryotes. Reptile combined with programs for the prediction of transmembrane domains and GPI-anchoring resulted in an effective tool for in silico identification of potential surface antigens and virulence factors from parasites. CONCLUSION: Systemic surveys for perfect amino acid repeats allowed basic comparisons between free-living and parasitic organisms that were directly applicable to predict proteins of serological and parasitological importance. An on-line tool is available at http://genomics.unibe.ch/dora.
Resumo:
Intravenous immunoglobulin (IVIg) preparations are derived from pooled plasma from up to 60,000 healthy human donors and reflect the immunologic experience of the donor population. IVIg contains monomeric and dimeric IgG populations which are in a dynamic equilibrium depending on concentration, pH, temperature, donor pool size, time and stabilizers added in order to keep the portion of dimeric IgG below a certain level. In the present study, monomeric and dimeric fractions were isolated by size exclusion chromatography. The dimeric fractions, however, showed a dynamic instability and tended to dissociate. Both dimeric and monomeric IgG fractions were acid treated (pH 4) in order to dissociate the dimeric IgG. Western-blot analysis identified a sub-population of SDS resistant IgG dimers. Furthermore, the reactivities of the fractions were tested against a panel of self- and exo-antigens. There was a marked increase in activity of the dimeric compared to the monomeric IgG fraction against various intracellular self-antigens. Our data indicates that the increased reactivities of pH 4-treated fractions can mainly be attributed to dimer dissociation, as pH 4-treated monomers do not show significantly increased activities against a range of antigens.
Resumo:
One of the several possible causes of irritable bowel syndrome (IBS) is thought to be low-grade mucosal inflammation. Flagellin, the primary structural component of bacterial flagellae, was shown in inflammatory bowel disease patients to activate the innate and adaptive immunity. It has not yet been conclusively established if IBS patients show reactivity to luminal antigens. In 266 patients [112 IBS, 61 Crohn's disease (CD), 50 ulcerative colitis (UC) and 43 healthy controls (HC)], we measured antibodies to flagellin (FAB, types A4-Fla2 and Fla-X), anti-Saccharomyces cerevisiae antibodies (ASCA) (both ELISA), antipancreas antibodies (PAB) and perinuclear antineutrophil cytoplasmatic antibodies (p-ANCA) (both IF). All IBS patients had normal fecal calprotectin (mean 21 microg mL(-1), SD 6.6) and fulfilled the ROME II criteria. Frequencies of antibodies in patients with IBS, CD, UC and HC, respectively, are as follows (in per cent): antibodies against A4-Fla2: 29/48/8/7; antibodies against Fla-X: 26/52/10/7; ASCA: 6/59/0/2; p-ANCA: 0/10/52/0; and PAB: 0/28/0/0. Antibodies against A4-Fla2 and Fla-X were significantly more frequent in IBS patients than in HC (P = 0.004 and P = 0.009). Antibodies to A4-Fla2 and Fla-X were significantly more frequent in IBS patients with antecedent gastroenteritis compared to non-postinfectious IBS patients (P = 0.002 and P = 0.012). In contrast to ASCA, PAB and p-ANCA, antibodies against A4-Fla2 and Fla-X were found significantly more often in IBS patients, particularly in those with postinfectious IBS, compared to HC. This observation supports the concept that immune reactivity to luminal antigens has a putative role in the development of IBS, at least in a subset of patients.
Resumo:
BACKGROUND: Tenofovir (TDF) use has been associated with proximal renal tubulopathy, reduced calculated glomerular filtration rates (cGFR) and losses in bone mineral density. Bone resorption could result in a compensatory osteoblast activation indicated by an increase in serum alkaline phosphatase (sAP). A few small studies have reported a positive correlation between renal phosphate losses, increased bone turnover and sAP. METHODS: We analysed sAP dynamics in patients initiating (n = 657), reinitiating (n = 361) and discontinuing (n = 73) combined antiretroviral therapy with and without TDF and assessed correlations with clinical and epidemiological parameters. RESULTS: TDF use was associated with a significant increase of sAP from a median of 74 U/I (interquartile range 60-98) to a plateau of 99 U/I (82-123) after 6 months (P < 0.0001), with a prompt return to baseline upon TDF discontinuation. No change occurred in TDF-sparing regimes. Univariable and multivariable linear regression analyses revealed a positive correlation between sAP and TDF use (P < or = 0.003), but no correlation with baseline cGFR, TDF-related cGFR reduction, changes in serum alanine aminotransferase (sALT) or active hepatitis C. CONCLUSIONS: We document a highly significant association between TDF use and increased sAP in a large observational cohort. The lack of correlation between TDF use and sALT suggests that the increase in sAP is because of the bone isoenzyme and indicates stimulated bone turnover. This finding, together with published data on TDF-related renal phosphate losses, this finding raises concerns that TDF use could result in osteomalacia with a loss in bone mineral density at least in a subset of patients. This potentially severe long-term toxicity should be addressed in future studies.