32 resultados para Aldosterone Excess
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Apparent mineralocorticoid excess (AME) is a severe form of hypertension that is caused by impaired activity of 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2), which converts biologically active cortisol into inactive cortisone. Mutations in HSD11B2 result in cortisol-induced activation of mineralocorticoid receptors and cause hypertension with hypokalemia, metabolic alkalosis, and suppressed circulating renin and aldosterone concentrations. This study uncovered the first patient with AME who was described in the literature, identified the genetic defect in HSD11B2, and provided evidence for a novel mechanism of reduced 11beta-HSD2 activity. This study identified a cluster of amino acids (335 to 339) in the C-terminus of 11beta-HSD2 that are essential for protein stability. The cluster includes Tyr(338), which is mutated in the index patient, and Arg(335) and Arg(337), previously reported to be mutated in hypertensive patients. It was found that wild-type 11beta-HSD2 is a relatively stable enzyme with a half-life of 21 h, whereas that of Tyr(338)His and Arg(337)His was 3 and 4 h, respectively. Enzymatic activity of Tyr(338)His was partially retained at 26 degrees C or in the presence of the chemical chaperones glycerol and dexamethasone, indicating thermodynamic instability and misfolding. The results provide evidence that the degradation of both misfolded mutant Tyr(338)His and wild-type 11beta-HSD2 occurs through the proteasome pathway. Therefore, impaired 11beta-HSD2 protein stability rather than reduced gene expression or loss of catalytic activity seems to be responsible for the development of hypertension in some individuals with AME.
Resumo:
Excess adiposity is associated with increased risks of developing adult malignancies. To inform public health policy and guide further research, the incident cancer burden attributable to excess body mass index (BMI >or= 25 kg/m(2)) across 30 European countries were estimated. Population attributable risks (PARs) were calculated using European- and gender-specific risk estimates from a published meta-analysis and gender-specific mean BMI estimates from a World Health Organization Global Infobase. Country-specific numbers of new cancers were derived from Globocan2002. A ten-year lag-period between risk exposure and cancer incidence was assumed and 95% confidence intervals (CI) were estimated in Monte Carlo simulations. In 2002, there were 2,171,351 new all cancer diagnoses in the 30 countries of Europe. Estimated PARs were 2.5% (95% CI 1.5-3.6%) in men and 4.1% (2.3-5.9%) in women. These collectively corresponded to 70,288 (95% CI 40,069-100,668) new cases. Sensitivity analyses revealed estimates were most influenced by the assumed shape of the BMI distribution in the population and cancer-specific risk estimates. In a scenario analysis of a plausible contemporary (2008) population, the estimated PARs increased to 3.2% (2.1-4.3%) and 8.6% (5.6-11.5%), respectively, in men and women. Endometrial, post-menopausal breast and colorectal cancers accounted for 65% of these cancers. This analysis quantifies the burden of incident cancers attributable to excess BMI in Europe. The estimates reported here provide a baseline for future modelling, and underline the need for research into interventions to control weight in the context of endometrial, breast and colorectal cancer.
Resumo:
During pregnancy, trophoblasts grow to adapt the feto-maternal unit to fetal requirements. Aldosterone and cortisol levels increase, the latter being inactivated by a healthy placenta. By contrast, preeclamptic placental growth is reduced while aldosterone levels are low and placental cortisol tissue levels are high due to improper deactivation. Aldosterone acts as a growth factor in many tissues, whereas cortisol inhibits growth. We hypothesized that in preeclampsia low aldosterone and enhanced cortisol availability might mutually affect placental growth and function. Proliferation of cultured human trophoblasts was time- and dose-dependently increased with aldosterone (P < 0.04 to P < 0.0001) and inhibited by spironolactone and glucocorticoids (P < 0.01). Mineralo- and glucocorticoid receptor expression and activation upon agonist stimulation was verified by visualization of nuclear translocation of the receptors. Functional aldosterone deficiency simulated in pregnant mice by spironolactone treatment (15 μg/g body weight/day) led to a reduced fetal umbilical blood flow (P < 0.05). In rat (P < 0.05; R(2) = 0.2055) and human (X(2) = 3.85; P = 0.0249) pregnancy, placental size was positively related to plasma aldosterone. Autocrine production of these steroid hormones was excluded functionally and via the absence of specific enzymatic transcripts for CYP11B2 and CYP11B1. In conclusion, activation of mineralocorticoid receptors by maternal aldosterone appears to be required for trophoblast growth and a normal feto-placental function. Thus, low aldosterone levels and enhanced cortisol availability may be one explanation for the reduced placental size in preeclampsia and related disorders.
Resumo:
Arterial hypertension in childhood is less frequent as compared to adulthood but is more likely to be secondary to an underlying disorder. After ruling out more obvious causes, some patients still present with strongly suspected secondary hypertension of yet unknown etiology. A number of these children have hypertension due to single gene mutations inherited in an autosomal dominant or recessive fashion. The finding of abnormal potassium levels (low or high) in the presence of suppressed renin secretion, and metabolic alkalosis or acidosis should prompt consideration of these familial diseases. However, mild hypertension and the absence of electrolyte abnormalities do not exclude hereditary conditions. In monogenic hypertensive disorders, three distinct mechanisms leading to the common final pathway of increased sodium reabsorption, volume expansion, and low plasma renin activity are documented. The first mechanism relates to gain-of-function mutations with a subsequent hyperactivity of renal sodium and chloride reabsorption leading to plasma volume expansion (e.g., Liddle's syndrome, Gordon's syndrome). The second mechanism involves deficiencies of enzymes that regulate adrenal steroid hormone synthesis and deactivation (e.g., subtypes of congenital adrenal hyperplasia, apparent mineralocorticoid excess (AME)). The third mechanism is characterized by excessive aldosterone synthesis that escapes normal regulatory mechanisms and leading to volume-dependent hypertension in the presence of suppressed renin release (glucocorticoid remediable aldosteronism). Hormonal studies coupled with genetic testing can help in the early diagnosis of these disorders.
Resumo:
We measured δ17O and δ18O in two Antarctic ice cores at EPICA Dome C (EDC) and TALDICE (TD), respectively and computed 17O-excess with respect to VSMOW. The comparison of our 17O-excess data with the previous record obtained at Vostok (Landais et al., 2008) revealed differences up to 35 ppm in 17O-excess mean level and evolution for the three sites. Our data showed that the large increase depicted at Vostok (20 ppm) during the last deglaciation, is a regional and not a general pattern in the temporal distribution of 17O-excess in East Antarctica. The EDC data display an increase of 13 ppm, whereas the TD data show no significant variation from the Last Glacial Maximum (LGM) to the Early Holocene (EH). Lagrangian moisture source diagnostic revealed very different source regions for Vostok and EDC compared to TD. These findings combined with the results of a sensitivity analysis, using a Rayleigh-type isotopic model, suggest that relative humidity (RH) at the oceanic source region (OSR) are a determining factor for the spatial differences of 17O-excess in East Antarctica. However, 17O-excess in remote sites of continental Antarctica (e.g. Vostok) may be highly sensitive to local effects. Hence, we consider 17O-excess in coastal East Antarctic ice cores (TD) to be more reliable as a proxy for RH at the OSR.
Resumo:
Introduction Angiogenic signals are a vital signal of placental integrity. Aldosterone has recently been shown to enhance placental growth factor (PlGF) expression in the peripheral vasculature [1] and to promote trophoblast growth [2]. The plgf gene possesses a functional mineralocorticoid receptor responsive element in the promoter region. Objectives Thus, we hypothesized that aldosterone adapts placental angiogenesis to trophoblast growth by secreting PlGF. Methods The human choriocarcinoma cell line BeWo and first and third trimester human primary trophoblasts cells were subjected to several syncytialization signals. Upon visual confirmation, the cultured cells were subjected to either control conditions, the known stimulator forskolin, and increasing amounts of aldosterone (10−9 to 10−6 M) with and without the competitive aldosterone receptor blocker spironolactone. After 6 and 24 h of incubation, RNA and protein were extracted. PlGF transcripts were quantified by Taqman PCR normalized to several housekeeping genes. Protein expression was quantified by ELISA. Results PlGF mRNA expression increased 3-fold with forskolin in BeWo cells. In this cell line, aldosterone could slightly stimulate PlGF production. In non-syncytialized primary human first trimester trophoblasts, aldosterone did not exert a specific effect. In contrast, the term primary human trophoblasts did respond with a 2.5-fold increase after incubation with aldosterone (10−7 M) in the presence of forskolin to allow forming a syncytial layer. PlGF protein was already slightly upregulated following 6 h of incubation with aldosterone. Conclusion We concluded that aldosterone does regulate PlGF expression in specified conditions during pregnancy. Inappropriately low aldosterone levels such as in preeclampsia might such not only compromise plasma volume and trophoblast growth but also placental vascularization and systemic PlGF availability. These observations merit further investigation.
Resumo:
We measured δ17O and δ18O in two Antarctic ice cores at EPICA Dome C (EDC) and TALDICE (TD), respectively, and computed 17O-excess with respect to VSMOW. The comparison of our 17O-excess data with the previous record obtained at Vostok (Landais et al., 2008a) revealed differences up to 35 ppm in 17O-excess mean level and evolution for the three sites. Our data show that the large increase depicted at Vostok (20 ppm) during the last deglaciation is a regional and not a general pattern in the temporal distribution of 17O-excess in East Antarctica. The EDC data display an increase of 12 ppm, whereas the TD data show no significant variation from the Last Glacial Maximum (LGM) to the Early Holocene (EH). A Lagrangian moisture source diagnostic revealed very different source regions for Vostok and EDC compared to TD. These findings combined with the results of a sensitivity analysis, using a Rayleigh-type isotopic model, suggest that normalized relative humidity (RHn) at the oceanic source region (OSR) is a determining factor for the spatial differences of 17O-excess in East Antarctica. However, 17O-excess in remote sites of continental Antarctica (e.g. Vostok) may be highly sensitive to local effects. Hence, we consider 17O-excess in coastal East Antarctic ice cores (TD) to be more reliable as a proxy for RHn at the OSR.
Vascular endothelial growth factor-A and aldosterone: relevance to normal pregnancy and preeclampsia
Resumo:
Aldosterone levels are markedly elevated during normal pregnancy but fall even though volume contracts when preeclampsia occurs. The level of aldosterone in either condition cannot be explained solely by the activity of the renin-angiotensin II system. In normal gestation, vascular endothelial growth factor (VEGF) is thought to maintain vascular health, but its role in adrenal hormone production is unknown. We hypothesized that the role of VEGF in the adrenal gland is to maintain vascular health and regulate aldosterone production. Here, we demonstrate that supernatant of endothelial cells grown in the presence of VEGF enhanced aldosterone synthase activity in human adrenocortical cells. VEGF either alone or combined with angiotensin II increased aldosterone production in adrenal cells. These data suggest that endothelial cell-dependent and independent activation of aldosterone is regulated by VEGF. In contrast to angiotensin II, VEGF did not upregulate the steroidogenic acute regulatory protein. Consistent with this observation, angiotensin II stimulated both aldosterone and cortisol synthesis from progesterone, whereas VEGF stimulated selectively aldosterone production. In rats, overexpression of soluble fms-like tyrosine kinase-1, an endogenous VEGF inhibitor, led to adrenocortical capillary rarefaction and fall in aldosterone concentrations that correlated inversely with soluble fms-like tyrosine kinase-1 levels. These findings may explain why aldosterone increases so markedly during normal gestation and why preeclampsia, a condition characterized by high soluble fms-like tyrosine kinase-1, is associated with inappropriately low aldosterone levels in spite of relatively lower plasma volumes.
Resumo:
Circulating aldosterone levels are increased in human pregnancy. Inadequately low aldosterone levels as present in preeclampsia, a life-threatening disease for both mother and child, are discussed to be involved in its pathogenesis or severity. Moreover, inactivating polymorphisms in the aldosterone synthase gene have been detected in preeclamptic women. Here, we used aldosterone synthase-deficient (AS(-/-)) mice to test whether the absence of aldosterone is sufficient to impair pregnancy or even to cause preeclampsia. AS(-/-) and AS(+/+) females were mated with AS(+/+) and AS(-/-) males, respectively, always generating AS(+/-) offspring. With maternal aldosterone deficiency in AS(-/-) mice, systolic blood pressure was low before and further reduced during pregnancy with no increase in proteinuria. Yet, AS(-/-) had smaller litters due to loss of fetuses as indicated by a high number of necrotic placentas with massive lymphocyte infiltrations at gestational day 18. Surviving fetuses and their placentas from AS(-/-) females were smaller. High-salt diet before and during pregnancy increased systolic blood pressure only before pregnancy in both genotypes and abolished the difference in blood pressure during late pregnancy. Litter size from AS(-/-) was slightly improved and the differences in placental and fetal weights between AS(+/+) and AS(-/-) mothers disappeared. Overall, an increased placental efficiency was observed in both groups paralleled by a normalization of elevated HIF1α levels in the AS(-/-) placentas. Our results demonstrate that aldosterone deficiency has profound adverse effects on placental function. High dietary salt intake improved placental function. In this animal model, aldosterone deficiency did not cause preeclampsia.
Resumo:
BACKGROUND: Trauma care is expensive. However, reliable data on the exact lifelong costs incurred by a major trauma patient are lacking. Discussion usually focuses on direct medical costs--underestimating consequential costs resulting from absence from work and permanent disability. METHODS: Direct medical costs and consequential costs of 63 major trauma survivors (ISS >13) at a Swiss trauma center from 1995 to 1996 were assessed 5 years posttrauma. The following cost evaluation methods were used: correction cost method (direct cost of restoring an original state), human capital method (indirect cost of lost productivity), contingent valuation method (human cost as the lost quality of life), and macroeconomic estimates. RESULTS: Mean ISS (Injury Severity Score) was 26.8 +/- 9.5 (mean +/- SD). In all, 22 patients (35%) were disabled, causing discounted average lifelong total costs of USD 1,293,800, compared with 41 patients (65%) who recovered without any disabilities with incurred costs of USD 147,200 (average of both groups USD 547,800). Two thirds of these costs were attributable to a loss of production whereas only one third was a result of the cost of correction. Primary hospital treatment (USD 27,800 +/- 37,800) was only a minor fraction of the total cost--less than the estimated cost of police and the judiciary. Loss of quality of life led to considerable intangible human costs similar to real costs. CONCLUSIONS: Trauma costs are commonly underestimated. Direct medical costs make up only a small part of the total costs. Consequential costs, such as lost productivity, are well in excess of the usual medical costs. Mere cost averages give a false estimate of the costs incurred by patients with/without disabilities.
Resumo:
BACKGROUND: The study aimed at defining the excess morbidity or mortality caused by an additional airway malformation in children with congenital heart disease requiring surgery. METHODS: All patients requiring surgery for heart disease during an 8-year period ending in 2003 who had an associated upper airway malformation were retrospectively studied. All patients were seen in 2004 for a prospective follow-up examination. RESULTS: Eleven patients with upper airway anomalies were identified (tracheobronchial malacia in 6 patients, long-segment tracheal stenosis in 3, and bilateral vocal cord paralysis and tracheal hemangioma in 1 patient each). They accounted for 1.5% of the entire cardiac surgical load of 764 patients. In 5 infants, the airway anomaly was diagnosed before cardiac repair, in 6 patients thereafter. Diagnosis was made by bronchoscopy in all patients, by additional bronchography in 2. Failure of rapid postoperative extubation was the most common finding. Airway management was surgical in 2 and conservative in 8 patients, 1 newborn having been denied therapy because of the severity of airway hypoplasia. Compared with patients with isolated cardiac disease, those with additional airway anomalies had significantly longer duration of postoperative mechanical ventilation (median, 24 days versus 3), perioperative hospitalization (median, 72 days versus 11) and total number of days of hospitalization during the first year of life (median, 104 days versus 14). After a maximum follow-up of 8 years (median, 37 months) only 3 of 10 surviving patients remained symptomatic owing to the airway malformation. CONCLUSIONS: Upper airway anomalies accompanying heart disease in infancy resulted in a significant prolongation of perioperative intensive care and hospital stay, as well as duration of mechanical ventilation. Failure of early postoperative extubation was the leading symptom.
Resumo:
Preeclampsia is a hypertensive disorder unique to pregnancy and remains the leading cause of maternal and fetal morbidity and mortality. Despite active research, the etiology of this disease remains still an enigma. There is increasing evidence that a combination of several factors is responsible for the development of preeclampsia. In this review, we discuss the role of aldosterone in the regulation of body fluid in pregnancy and preeclampsia. Aldosterone is produced by the enzyme aldosterone synthase and competes with cortisol and progesterone for the mineralocorticoid receptor, thus affecting sodium reabsorption and maternal volume expansion. Aldosterone seems to play a pivotal role in controlling blood pressure during pregnancy and to contribute to the well-being of the mother-to-be. Novel findings in understanding the underlying causes of preeclampsia provide a rationale for future novel prophylactic and therapeutic interventions in the treatment of this pregnancy-associated disease.