18 resultados para Al-MCM-41. Thermogravimetry. Model free kinetics. Apparent activation energy
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We present an automatic method to segment brain tissues from volumetric MRI brain tumor images. The method is based on non-rigid registration of an average atlas in combination with a biomechanically justified tumor growth model to simulate soft-tissue deformations caused by the tumor mass-effect. The tumor growth model, which is formulated as a mesh-free Markov Random Field energy minimization problem, ensures correspondence between the atlas and the patient image, prior to the registration step. The method is non-parametric, simple and fast compared to other approaches while maintaining similar accuracy. It has been evaluated qualitatively and quantitatively with promising results on eight datasets comprising simulated images and real patient data.
Resumo:
One of the most intriguing phenomena in glass forming systems is the dynamic crossover (T(B)), occurring well above the glass temperature (T(g)). So far, it was estimated mainly from the linearized derivative analysis of the primary relaxation time τ(T) or viscosity η(T) experimental data, originally proposed by Stickel et al. [J. Chem. Phys. 104, 2043 (1996); J. Chem. Phys. 107, 1086 (1997)]. However, this formal procedure is based on the general validity of the Vogel-Fulcher-Tammann equation, which has been strongly questioned recently [T. Hecksher et al. Nature Phys. 4, 737 (2008); P. Lunkenheimer et al. Phys. Rev. E 81, 051504 (2010); J. C. Martinez-Garcia et al. J. Chem. Phys. 134, 024512 (2011)]. We present a qualitatively new way to identify the dynamic crossover based on the apparent enthalpy space (H(a)(') = dlnτ/d(1/T)) analysis via a new plot lnH(a)(') vs. 1∕T supported by the Savitzky-Golay filtering procedure for getting an insight into the noise-distorted high order derivatives. It is shown that depending on the ratio between the "virtual" fragility in the high temperature dynamic domain (m(high)) and the "real" fragility at T(g) (the low temperature dynamic domain, m = m(low)) glass formers can be splitted into two groups related to f < 1 and f > 1, (f = m(high)∕m(low)). The link of this phenomenon to the ratio between the apparent enthalpy and activation energy as well as the behavior of the configurational entropy is indicated.
Resumo:
The 146Sm–142Nd system plays a central role in tracing the silicate differentiation of the Earth prior to 4.1 Ga. After this time, given its initial abundance, the 146Sm can be considered to be extinct. Upadhyay et al. (2009) reported unexpected negative 142Nd anomalies in 1.48 Ga rocks of the Khariar nepheline syenite complex (India) and inferred that an early enriched, low-Sm/Nd reservoir must have contributed to the mantle source rocks of the Khariar complex. As 146Sm had been effectively extinct for about 2.6 billion years before the crystallisation of the Khariar samples, this Nd signature should have remained isolated from the convective mantle for at least that long. It was thus suggested that the source rock of Khariar samples had been sequestered in the lithospheric root of the Indian craton. Using a different chemical separation method, and a different Thermal Ionization Mass Spectrometry (TIMS) analysis protocol, the present study attempted to replicate these negative 142Nd anomalies, but none were found. To determine which data set is correct, we investigated three possible sources of bias between them: imperfect cancellation of Faraday collector efficiencies during multidynamic TIMS analysis, rapid sample fractionation between the sequential measurement of 146Nd/144Nd and 142Nd/144Nd, and non-exponential law behaviour resulting from so-called “domain mixing.” Incomplete cancellation of collector efficiencies was found unlikely to cause resolvable biases at the estimated level of variation among collector efficiencies. Even in the case of highly variable efficiency and resolvable biases, there is no reason to suspect that they would reproducibly affect only four rocks out of 10 analysed by Upadhyay et al. (2009). Although domain mixing may explain apparent “reverse” fractionation trends observed in some TIMS analyses, it cannot be the cause of the apparent negative anomalies in the study of Upadhyay et al. (2009). It was determined that rapid mass fractionation during the course of a multidynamic TIMS analysis can bias all measured Nd ratios. After applying an approximate correction for this effect, only one rock from Upadhyay et al. (2009) retained an apparent negative 142Nd anomaly. This, in conjunction with our new, anomaly-free data set measured at fractionation rates too low to cause bias, leads to the conclusion that the anomalies reported by Upadhyay et al. (2009) are a subtle and reproducible analytical artefact. The absence of negative 142Nd anomalies in these rocks relaxes the need for a mechanism (other than crust formation) that can isolate a Nd reservoir from the convective mantle for billions of years.
Resumo:
The interest in automatic volume meshing for finite element analysis (FEA) has grown more since the appearance of microfocus CT (μCT), due to its high resolution, which allows for the assessment of mechanical behaviour at a high precision. Nevertheless, the basic meshing approach of generating one hexahedron per voxel produces jagged edges. To prevent this effect, smoothing algorithms have been introduced to enhance the topology of the mesh. However, whether smoothing also improves the accuracy of voxel-based meshes in clinical applications is still under question. There is a trade-off between smoothing and quality of elements in the mesh. Distorted elements may be produced by excessive smoothing and reduce accuracy of the mesh. In the present work, influence of smoothing on the accuracy of voxel-based meshes in micro-FE was assessed. An accurate 3D model of a trabecular structure with known apparent mechanical properties was used as a reference model. Virtual CT scans of this reference model (with resolutions of 16, 32 and 64 μm) were then created and used to build voxel-based meshes of the microarchitecture. Effects of smoothing on the apparent mechanical properties of the voxel-based meshes as compared to the reference model were evaluated. Apparent Young’s moduli of the smooth voxel-based mesh were significantly closer to those of the reference model for the 16 and 32 μm resolutions. Improvements were not significant for the 64 μm, due to loss of trabecular connectivity in the model. This study shows that smoothing offers a real benefit to voxel-based meshes used in micro-FE. It might also broaden voxel-based meshing to other biomechanical domains where it was not used previously due to lack of accuracy. As an example, this work will be used in the framework of the European project ContraCancrum, which aims at providing a patient-specific simulation of tumour development in brain and lungs for oncologists. For this type of clinical application, such a fast, automatic, and accurate generation of the mesh is of great benefit.
Resumo:
Neurally adjusted ventilatory assist (NAVA) delivers airway pressure (P(aw)) in proportion to the electrical activity of the diaphragm (EAdi) using an adjustable proportionality constant (NAVA level, cm·H(2)O/μV). During systematic increases in the NAVA level, feedback-controlled down-regulation of the EAdi results in a characteristic two-phased response in P(aw) and tidal volume (Vt). The transition from the 1st to the 2nd response phase allows identification of adequate unloading of the respiratory muscles with NAVA (NAVA(AL)). We aimed to develop and validate a mathematical algorithm to identify NAVA(AL). P(aw), Vt, and EAdi were recorded while systematically increasing the NAVA level in 19 adult patients. In a multistep approach, inspiratory P(aw) peaks were first identified by dividing the EAdi into inspiratory portions using Gaussian mixture modeling. Two polynomials were then fitted onto the curves of both P(aw) peaks and Vt. The beginning of the P(aw) and Vt plateaus, and thus NAVA(AL), was identified at the minimum of squared polynomial derivative and polynomial fitting errors. A graphical user interface was developed in the Matlab computing environment. Median NAVA(AL) visually estimated by 18 independent physicians was 2.7 (range 0.4 to 5.8) cm·H(2)O/μV and identified by our model was 2.6 (range 0.6 to 5.0) cm·H(2)O/μV. NAVA(AL) identified by our model was below the range of visually estimated NAVA(AL) in two instances and was above in one instance. We conclude that our model identifies NAVA(AL) in most instances with acceptable accuracy for application in clinical routine and research.
Resumo:
Recombinant human growth hormone (rhGH) therapy is used in the long-term treatment of children with growth disorders, but there is considerable treatment response variability. The exon 3-deleted growth hormone receptor polymorphism (GHR(d3)) may account for some of this variability. The authors performed a systematic review (to April 2011), including investigator-only data, to quantify the effects of the GHR(fl-d3) and GHR(d3-d3) genotypes on rhGH therapy response and used a recently established Bayesian inheritance model-free approach to meta-analyze the data. The primary outcome was the 1-year change-in-height standard-deviation score for the 2 genotypes. Eighteen data sets from 12 studies (1,527 children) were included. After several prior assumptions were tested, the most appropriate inheritance model was codominant (posterior probability = 0.93). Compared with noncarriers, carriers had median differences in 1-year change-in-height standard-deviation score of 0.09 (95% credible interval (CrI): 0.01, 0.17) for GHR(fl-d3) and of 0.14 (95% CrI: 0.02, 0.26) for GHR(d3-d3). However, the between-study standard deviation of 0.18 (95% CrI: 0.10, 0.33) was considerable. The authors tested by meta-regression for potential modifiers and found no substantial influence. They conclude that 1) the GHR(d3) polymorphism inheritance is codominant, contrasting with previous reports; 2) GHR(d3) genotypes account for modest increases in rhGH effects in children; and 3) considerable unexplained variability in responsiveness remains.
Resumo:
Background: Accelerometry has been established as an objective method that can be used to assess physical activity behavior in large groups. The purpose of the current study was to provide a validated equation to translate accelerometer counts of the triaxial GT3X into energy expenditure in young children. Methods: Thirty-two children aged 5–9 years performed locomotor and play activities that are typical for their age group. Children wore a GT3X accelerometer and their energy expenditure was measured with indirect calorimetry. Twenty-one children were randomly selected to serve as development group. A cubic 2-regression model involving separate equations for locomotor and play activities was developed on the basis of model fit. It was then validated using data of the remaining children and compared with a linear 2-regression model and a linear 1-regression model. Results: All 3 regression models produced strong correlations between predicted and measured MET values. Agreement was acceptable for the cubic model and good for both linear regression approaches. Conclusions: The current linear 1-regression model provides valid estimates of energy expenditure for ActiGraph GT3X data for 5- to 9-year-old children and shows equal or better predictive validity than a cubic or a linear 2-regression model.
Resumo:
Dopaminergic signals play a mathematically precise role in reward-related learning, and variations in dopaminergic signaling have been implicated in vulnerability to addiction. Here, we provide a detailed overview of the relationship between theoretical, mathematical, and experimental accounts of phasic dopamine signaling, with implications for the role of learning-related dopamine signaling in addiction and related disorders. We describe the theoretical and behavioral characteristics of model-free learning based on errors in the prediction of reward, including step-by-step explanations of the underlying equations. We then use recent insights from an animal model that highlights individual variation in learning during a Pavlovian conditioning paradigm to describe overlapping aspects of incentive salience attribution and model-free learning. We argue that this provides a computationally coherent account of some features of addiction.
Resumo:
OBJECTIVES The aim of this case series was to introduce a complete digital workflow for the production of monolithic implant crowns. MATERIAL AND METHODS Six patients were treated with implant-supported crowns made of resin nano ceramic (RNC). Starting with an intraoral optical scan (IOS), and following a CAD/CAM process, the monolithic crowns were bonded either to a novel prefabricated titanium abutment base (group A) or to a CAD/CAM-generated individualized titanium abutment (group B) in premolar or molar sites on a soft tissue level dental implant. Economic analyses included clinical and laboratory steps. An esthetic evaluation was performed to compare the two abutment-crown combinations. RESULTS None of the digitally constructed RNC crowns required any clinical adaptation. Overall mean work time calculations revealed obvious differences for group A (65.3 min) compared with group B (86.5 min). Esthetic analysis demonstrated a more favorable outcome for the prefabricated bonding bases. CONCLUSIONS Prefabricated or individualized abutments on monolithic RNC crowns using CAD/CAM technology in a model-free workflow seem to provide a feasible and streamlined treatment approach for single-edentulous space rehabilitation in the posterior region. However, RNC as full-contour material has to be considered experimental, and further large-scale clinical investigations with long-term follow-up observation are necessary.
Resumo:
Immunological homeostasis in the respiratory tract is thought to require balanced interactions between networks of dendritic cell (DC) subsets in lung microenvironments in order to regulate tolerance or immunity to inhaled antigens and pathogens. Influenza A virus (IAV) poses a serious threat of long-term disruption to this balance through its potent pro-inflammatory activities. In this study, we have used a BALB/c mouse model of A/PR8/34 H1N1 Influenza Type A Virus infection to examine the effects of IAV on respiratory tissue DC subsets during the recovery phase following clearance of the virus. In adult mice, we found differences in the kinetics and activation states of DC residing in the airway mucosa (AMDC) compared to those in the parenchymal lung (PLDC) compartments. A significant depletion in the percentage of AMDC was observed at day 4 post-infection that was associated with a change in steady-state CD11b+ and CD11b- AMDC subset frequencies and significantly elevated CD40 and CD80 expression and that returned to baseline by day 14 post-infection. In contrast, percentages and total numbers of PLDC were significantly elevated at day 14 and remained so until day 21 post-infection. Accompanying this was a change in CD11b+and CD11b- PLDC subset frequencies and significant increase in CD40 and CD80 expression at these time points. Furthermore, mice infected with IAV at 4 weeks of age showed a significant increase in total numbers of PLDC, and increased CD40 expression on both AMDC and PLDC, when analysed as adults 35 days later. These data suggest that the rate of recovery of DC populations following IAV infection differs in the mucosal and parenchymal compartments of the lung and that DC populations can remain disrupted and activated for a prolonged period following viral clearance, into adulthood if infection occurred early in life.
Resumo:
Many biological processes depend on the sequential assembly of protein complexes. However, studying the kinetics of such processes by direct methods is often not feasible. As an important class of such protein complexes, pore-forming toxins start their journey as soluble monomeric proteins, and oligomerize into transmembrane complexes to eventually form pores in the target cell membrane. Here, we monitored pore formation kinetics for the well-characterized bacterial pore-forming toxin aerolysin in single cells in real time to determine the lag times leading to the formation of the first functional pores per cell. Probabilistic modeling of these lag times revealed that one slow and seven equally fast rate-limiting reactions best explain the overall pore formation kinetics. The model predicted that monomer activation is the rate-limiting step for the entire pore formation process. We hypothesized that this could be through release of a propeptide and indeed found that peptide removal abolished these steps. This study illustrates how stochasticity in the kinetics of a complex process can be exploited to identify rate-limiting mechanisms underlying multistep biomolecular assembly pathways.
Resumo:
Normal grain growth of calcite was investigated by combining grain size analysis of calcite across the contact aureole of the Adamello pluton, and grain growth modeling based on a thermal model of the surroundings of the pluton. In an unbiased model system, i.e., location dependent variations in temperature-time path, 2/3 and 1/3 of grain growth occurs during pro- and retrograde metamorphism at all locations, respectively. In contrast to this idealized situation, in the field example three groups can be distinguished, which are characterized by variations in their grain size versus temperature relationships: Group I occurs at low temperatures and the grain size remains constant because nano-scale second phase particles of organic origin inhibit grain growth in the calcite aggregates under these conditions. In the presence of an aqueous fluid, these second phases decay at a temperature of about 350 °C enabling the onset of grain growth in calcite. In the following growth period, fluid-enhanced group II and slower group III growth occurs. For group II a continuous and intense grain size increase with T is typical while the grain growth decreases with T for group III. None of the observed trends correlate with experimentally based grain growth kinetics, probably due to differences between nature and experiment which have not yet been investigated (e.g., porosity, second phases). Therefore, grain growth modeling was used to iteratively improve the correlation between measured and modeled grain sizes by optimizing activation energy (Q), pre-exponential factor (k0) and grain size exponent (n). For n=2, Q of 350 kJ/mol, k0 of 1.7×1021 μmns−1 and Q of 35 kJ/mol, k0 of 2.5×10-5 μmns−1 were obtained for group II and III, respectively. With respect to future work, field-data based grain growth modeling might be a promising tool for investigating the influences of secondary effects like porosity and second phases on grain growth in nature, and to unravel differences between nature and experiment.
Resumo:
Monte Carlo (code GEANT) produced 6 and 15 MV phase space (PS) data were used to define several simple photon beam models. For creating the PS data the energy of starting electrons hitting the target was tuned to get correct depth dose data compared to measurements. The modeling process used the full PS information within the geometrical boundaries of the beam including all scattered radiation of the accelerator head. Scattered radiation outside the boundaries was neglected. Photons and electrons were assumed to be radiated from point sources. Four different models were investigated which involved different ways to determine the energies and locations of beam particles in the output plane. Depth dose curves, profiles, and relative output factors were calculated with these models for six field sizes from 5x5 to 40x40cm2 and compared to measurements. Model 1 uses a photon energy spectrum independent of location in the PS plane and a constant photon fluence in this plane. Model 2 takes into account the spatial particle fluence distribution in the PS plane. A constant fluence is used again in model 3, but the photon energy spectrum depends upon the off axis position. Model 4, finally uses the spatial particle fluence distribution and off axis dependent photon energy spectra in the PS plane. Depth dose curves and profiles for field sizes up to 10x10cm2 were not model sensitive. Good agreement between measured and calculated depth dose curves and profiles for all field sizes was reached for model 4. However, increasing deviations were found for increasing field sizes for models 1-3. Large deviations resulted for the profiles of models 2 and 3. This is due to the fact that these models overestimate and underestimate the energy fluence at large off axis distances. Relative output factors consistent with measurements resulted only for model 4.