29 resultados para Air pollution.
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Objective: Myocardial infarction has been associated with both transportation noise and air pollution. We examined residential exposure to aircraft noise and mortality from myocardial infarction, taking air pollution into account. Methods: We analyzed the Swiss National Cohort, which includes geocoded information on residence. Exposure to aircraft noise and air pollution was determined based on geospatial noise and air-pollution (PM10) models and distance to major roads. We used Cox proportional hazard models, with age as the timescale. We compared the risk of death across categories of A-weighted sound pressure levels (dB(A)) and by duration of living in exposed corridors, adjusting for PM10 levels, distance to major roads, sex, education, and socioeconomic position of the municipality. Results: We analyzed 4.6 million persons older than 30 years who were followed from near the end of 2000 through December 2005, including 15,532 deaths from myocardial infarction (ICD-10 codes I 21, I 22). Mortality increased with increasing level and duration of aircraft noise. The adjusted hazard ratio comparing ≥60 dB(A) with <45 dB(A) was 1.3 (95% confidence interval = 0.96-1.7) overall, and 1.5 (1.0-2.2) in persons who had lived at the same place for at least 15 years. None of the other endpoints (mortality from all causes, all circulatory disease, cerebrovascular disease, stroke, and lung cancer) was associated with aircraft noise. Conclusion: Aircraft noise was associated with mortality from myocardial infarction, with a dose-response relationship for level and duration of exposure. The association does not appear to be explained by exposure to particulate matter air pollution, education, or socioeconomic status of the municipality.
Resumo:
Background/Objectives Ambient air pollution can alter cytokine concentrations as shown in vitro and following short-term exposure to high air pollution levels in vivo. Exposure to pollution during late pregnancy has been shown to affect fetal lymphocytic immunophenotypes. However, effects of prenatal exposure to moderate levels of air pollutants on cytokine regulation in cord blood of healthy infants are unknown. Methods In a birth cohort of 265 healthy term-born neonates, we assessed maternal exposure to particles with an aerodynamic diameter of 10 µm or less (PM10), as well as to indoor air pollution during the last trimester, specifically the last 21, 14, 7, 3 and 1 days of pregnancy. As a proxy for traffic-related air pollution, we determined the distance of mothers' homes to major roads. We measured cytokine and chemokine levels (MCP-1, IL-6, IL-10, IL-1ß, TNF-α and GM-CSF) in cord blood serum using LUMINEX technology. Their association with pollution levels was assessed using regression analysis, adjusted for possible confounders. Results Mean (95%-CI) PM10 exposure for the last 7 days of pregnancy was 18.3 (10.3–38.4 µg/m3). PM10 exposure during the last 3 days of pregnancy was significantly associated with reduced IL-10 and during the last 3 months of pregnancy with increased IL-1ß levels in cord blood after adjustment for relevant confounders. Maternal smoking was associated with reduced IL-6 levels. For the other cytokines no association was found. Conclusions Our results suggest that even naturally occurring prenatal exposure to moderate amounts of indoor and outdoor air pollution may lead to changes in cord blood cytokine levels in a population based cohort.
A prospective study of the impact of air pollution on respiratory symptoms and infections in infants
Resumo:
Rationale: There is increasing evidence that short-term exposure to air pollution has a detrimental effect on respiratory health, but data from healthy populations, particularly infants, are scarce. Objectives: To assess the association of air pollution with frequency and severity of respiratory symptoms and infections measured weekly in healthy infants. Methods: In a prospective birth cohort of 366 infants of unselected mothers, respiratory health was assessed weekly by telephone interviews during the first year of life (19,106 total observations). Daily mean levels of particulate matter (PM10), nitrogen dioxide (NO2), and ozone (O3) were obtained from local monitoring stations. We determined the association of the preceding week's pollutant levels with symptom scores and respiratory tract infections using a generalized additive mixed model with an autoregressive component. In addition, we assessed whether neonatal lung function influences this association and whether duration of infectious episodes differed between weeks with normal PM10 and weeks with elevated levels. Measurements and Main Results: We found a significant association between air pollution and respiratory symptoms, particularly in the week after respiratory tract infections (risk ratio, 1.13 [1.02-1.24] per 10 μg/m(3) PM10 levels) and in infants with premorbid lung function. During times of elevated PM10 (>33.3 μg/m(3)), duration of respiratory tract infections increased by 20% (95% confidence interval, 2-42%). Conclusions: Exposure to even moderate levels of air pollution was associated with increased respiratory symptoms in healthy infants. Particularly in infants with premorbid lung function and inflammation, air pollution contributed to longer duration of infectious episodes with a potentially large socioeconomic impact.
Resumo:
There is increasing evidence of the adverse impact of prenatal exposure to air pollution. This is of particular interest, as exposure during pregnancy--a crucial time span of important biological development--may have long-term implications. The aims of this review are to show current epidemiological evidence of known effects of prenatal exposure to air pollution and present possible mechanisms behind this process. Harmful effects of exposure to air pollution during pregnancy have been shown for different birth outcomes: higher infant mortality, lower birth weight, impaired lung development, increased later respiratory morbidity, and early alterations in immune development. Although results on lower birth weight are somewhat controversial, evidence for higher infant mortality is consistent in studies published worldwide. Possible mechanisms include direct toxicity of particles due to particle translocation across tissue barriers or particle penetration across cellular membranes. The induction of specific processes or interaction with immune cells in either the pregnant mother or the fetus may be possible consequences. Indirect effects could be oxidative stress and inflammation with consequent hemodynamic alterations resulting in decreased placental blood flow and reduced transfer of nutrients to the fetus. The early developmental phase of pregnancy is thought to be very important in determining long-term growth and overall health. So-called "tracking" of somatic growth and lung function is believed to have a huge impact on long-term morbidity, especially from a public health perspective. This is particularly important in areas with high levels of outdoor pollution, where it is practically impossible for an individual to avoid exposure. Especially in these areas, good evidence for the association between prenatal exposure to air pollution and infant mortality exists, clearly indicating the need for more stringent measures to reduce exposure to air pollution.
Resumo:
Post-natal exposure to air pollution is associated with diminished lung growth during school age. The current authors aimed to determine whether pre-natal exposure to air pollution is associated with lung function changes in the newborn. In a prospective birth cohort of 241 healthy term-born neonates, tidal breathing, lung volume, ventilation inhomogeneity and exhaled nitric oxide (eNO) were measured during unsedated sleep at age 5 weeks. Maternal exposure to particles with a 50% cut-off aerodynamic diameter of 10 microm (PM(10)), nitrogen dioxide (NO(2)) and ozone (O(3)), and distance to major roads were estimated during pregnancy. The association between these exposures and lung function was assessed using linear regression. Minute ventilation was higher in infants with higher pre-natal PM(10) exposure (24.9 mL x min(-1) per microg x m(-3) PM(10)). The eNO was increased in infants with higher pre-natal NO(2) exposure (0.98 ppb per microg x m(-3) NO(2)). Post-natal exposure to air pollution did not modify these findings. No association was found for pre-natal exposure to O(3) and lung function parameters. The present results suggest that pre-natal exposure to air pollution might be associated with higher respiratory need and airway inflammation in newborns. Such alterations during early lung development may be important regarding long-term respiratory morbidity.
Resumo:
Climate change alone influences future levels of tropospheric ozone and their precursors through modifications of gas-phase chemistry, transport, removal, and natural emissions. The goal of this study is to determine at what extent the modes of variability of gas-phase pollutants respond to different climate change scenarios over Europe. The methodology includes the use of the regional modeling system MM5 (regional climate model version)-CHIMERE for a target domain covering Europe. Two full-transient simulations covering from 1991–2050 under the SRES A2 and B2 scenarios driven by ECHO-G global circulation model have been compared. The results indicate that the spatial patterns of variability for tropospheric ozone are similar for both scenarios, but the magnitude of the change signal significantly differs for A2 and B2. The 1991–2050 simulations share common characteristics for their chemical behavior. As observed from the NO2 and α-pinene modes of variability, our simulations suggest that the enhanced ozone chemical activity is driven by a number of parameters, such as the warming-induced increase in biogenic emissions and, to a lesser extent, by the variation in nitrogen dioxide levels. For gas-phase pollutants, the general increasing trend for ozone found under A2 and B2 forcing is due to a multiplicity of climate factors, such as increased temperature, decreased wet removal associated with an overall decrease of precipitation in southern Europe, increased photolysis of primary and secondary pollutants as a consequence of lower cloudiness and increased biogenic emissions fueled by higher temperatures.
Resumo:
Exposure to outdoor air pollutants and passive tobacco smoke are common but avoidable worldwide risk factors for morbidity and mortality of individuals. In addition to well-known effects of pollutants on the cardiovascular system and the development of cancer, in recent years the association between air pollution and respiratory morbidity has become increasingly apparent. Not only in adults, but also in children with asthma and in healthy children a clear harmful effect of exposure towards air pollutants has been demonstrated in many studies. Among others increased pollution has been shown to result in more frequent and more severe respiratory symptoms, more frequent exacerbations, higher need for asthma medication, poorer lung function and increased visits to the emergency department and more frequent hospitalisations. While these associations are well established, the available data on the role of air pollution in the development of asthma seems less clear. Some studies have shown that increased exposure towards tobacco smoke and air pollution leads to an increase in asthma incidence and prevalence; others were not able to confirm those findings. Possible reasons for this discrepancy are different definitions of the outcome asthma, different methods for exposure estimation and differences in the populations studied with differing underlying genetic backgrounds. Regardless of this inconsistency, several mechanisms have already been identified linking air pollution with asthma development. Among these are impaired lung growth and development, immunological changes, genetic or epigenetic effects or increased predisposition for allergic sensitisation. What the exact interactions are and which asthmatic phenotypes will be influenced most by pollutants will be shown by future studies. This knowledge will then be helpful in exploring possible preventive measures for the individual and to help policy makers in deciding upon most appropriate regulations on a population level.
Resumo:
Rapid industrialization and urbanization in developing countries has led to an increase in air pollution, along a similar trajectory to that previously experienced by the developed nations. In China, particulate pollution is a serious environmental problem that is influencing air quality, regional and global climates, and human health. In response to the extremely severe and persistent haze pollution experienced by about 800 million people during the first quarter of 2013 (refs 4, 5), the Chinese State Council announced its aim to reduce concentrations of PM2.5 (particulate matter with an aerodynamic diameter less than 2.5micrometres) by up to 25 per cent relative to 2012 levels by 2017 (ref. 6). Such efforts however require elucidation of the factors governing the abundance and composition of PM2.5, which remain poorly constrained in China. Here we combine a comprehensive set of novel and state-of-the-art offline analytical approaches and statistical techniques to investigate the chemical nature and sources of particulate matter at urban locations in Beijing, Shanghai, Guangzhou and Xi'an during January 2013. We find that the severe haze pollution event was driven to a large extent by secondary aerosol formation, which contributed 30-77 per cent and 44-71 per cent (average for all four cities) of PM2.5 and of organic aerosol, respectively. On average, the contribution of secondary organic aerosol (SOA) and secondary inorganic aerosol (SIA) are found to be of similar importance (SOA/SIA ratios range from 0.6 to 1.4). Our results suggest that, in addition to mitigating primary particulate emissions, reducing the emissions of secondary aerosol precursors from, for example, fossil fuel combustion and biomass burning is likely to be important for controlling China's PM2.5 levels and for reducing the environmental, economic and health impacts resulting from particulate pollution.
Resumo:
Despite the many proposed advantages related to nanotechnology, there are increasing concerns as to the potential adverse human health and environmental effects that the production of, and subsequent exposure to nanoparticles (NPs) might pose. In regard to human health, these concerns are founded upon the plethora of knowledge gained from research relating to the effects observed following exposure to environmental air pollution. It is known that increased exposure to environmental air pollution can cause reduced respiratory health, as well as exacerbate pre-existing conditions such as cardiovascular disease and chronic obstructive pulmonary disease. Such disease states have also been associated with exposure to the NP component contained within environmental air pollution, raising concerns as to the effects of NP exposure. It is not only exposure to accidentally produced NPs however, which should be approached with caution. Over the past decades, NPs have been specifically engineered for a wide range of consumer, industrial and technological applications. Due to the inevitable exposure of NPs to humans, owing to their use in such applications, it is therefore imperative that an understanding of how NPs interact with the human body is gained. In vivo research poses a beneficial model for gaining immediate and direct knowledge of human exposure to such xenobiotics. This research outlook however, has numerous limitations. Increased research using in vitro models has therefore been performed, as these models provide an inexpensive and high-throughput alternative to in vivo research strategies. Despite such advantages, there are also various restrictions in regard to in vitro research. Therefore, the aim of this review, in addition to providing a short perspective upon the field of nanotoxicology, is to discuss (1) the advantages and disadvantages of in vitro research and (2) how in vitro research may provide essential information pertaining to the human health risks posed by NP exposure.
Resumo:
The Advanced Very High Resolution Radiometer (AVHRR) carried on board the National Oceanic and Atmospheric Administration (NOAA) and the Meteorological Operational Satellite (MetOp) polar orbiting satellites is the only instrument offering more than 25 years of satellite data to analyse aerosols on a daily basis. The present study assessed a modified AVHRR aerosol optical depth τa retrieval over land for Europe. The algorithm might also be applied to other parts of the world with similar surface characteristics like Europe, only the aerosol properties would have to be adapted to a new region. The initial approach used a relationship between Sun photometer measurements from the Aerosol Robotic Network (AERONET) and the satellite data to post-process the retrieved τa. Herein a quasi-stand-alone procedure, which is more suitable for the pre-AERONET era, is presented. In addition, the estimation of surface reflectance, the aerosol model, and other processing steps have been adapted. The method's cross-platform applicability was tested by validating τa from NOAA-17 and NOAA-18 AVHRR at 15 AERONET sites in Central Europe (40.5° N–50° N, 0° E–17° E) from August 2005 to December 2007. Furthermore, the accuracy of the AVHRR retrieval was related to products from two newer instruments, the Medium Resolution Imaging Spectrometer (MERIS) on board the Environmental Satellite (ENVISAT) and the Moderate Resolution Imaging Spectroradiometer (MODIS) on board Aqua/Terra. Considering the linear correlation coefficient R, the AVHRR results were similar to those of MERIS with even lower root mean square error RMSE. Not surprisingly, MODIS, with its high spectral coverage, gave the highest R and lowest RMSE. Regarding monthly averaged τa, the results were ambiguous. Focusing on small-scale structures, R was reduced for all sensors, whereas the RMSE solely for MERIS substantially increased. Regarding larger areas like Central Europe, the error statistics were similar to the individual match-ups. This was mainly explained with sampling issues. With the successful validation of AVHRR we are now able to concentrate on our large data archive dating back to 1985. This is a unique opportunity for both climate and air pollution studies over land surfaces.
Resumo:
Low mol. wt. (LMW) org. acids are important and ubiquitous chem. constituents in the atm. A comprehensive study of the chem. compn. of pptn. was carried out from June 2007 to June 2008 at a rural site in Anshun, in the west of Guizhou Province, China. During this period, 118 rainwater samples were collected and the main LMW carboxylic acids were detd. using ion chromatog. The av. pH of rainwater was 4.89 which is a typical acidic value. The most abundant carboxylic acids were formic acid (vol. wt. mean concn.: 8.77 μmol L-1) and acetic acid (6.90 μmol L-1), followed by oxalic acid (2.05 μmol L-1). The seasonal variation of concns. and wet deposition fluxes of org. acids indicated that direct vegetation emissions were the main sources of the org. acids. Highest concns. were obsd. in winter and were ascribed to the low winter rainfall and the contribution of other air pollution sources northeast of the study area. The ratio of formic and acetic acids in the pptn. ([F/A]T) was proposed as an indicator of pollution source. This suggested that the pollution resulted from direct emissions from natural or anthropogenic sources. Comparison with acid pptn. in other urban and rural areas in Guizhou showed that there was a decreasing contribution of LMW org. acids to free acidity and all anions in rainwater from urban to remote rural areas. Consequently, it is necessary to control emissions of org. acids to reduce the frequency of acid rain, esp. in rural and remote areas. [on SciFinder(R)]
Resumo:
BACKGROUND: Many studies showing effects of traffic-related air pollution on health rely on self-reported exposure, which may be inaccurate. We estimated the association between self-reported exposure to road traffic and respiratory symptoms in preschool children, and investigated whether the effect could have been caused by reporting bias. METHODS: In a random sample of 8700 preschool children in Leicestershire, UK, exposure to road traffic and respiratory symptoms were assessed by a postal questionnaire (response rate 80%). The association between traffic exposure and respiratory outcomes was assessed using unconditional logistic regression and conditional regression models (matching by postcode). RESULTS: Prevalence odds ratios (95% confidence intervals) for self-reported road traffic exposure, comparing the categories 'moderate' and 'dense', respectively, with 'little or no' were for current wheezing: 1.26 (1.13-1.42) and 1.30 (1.09-1.55); chronic rhinitis: 1.18 (1.05-1.31) and 1.31 (1.11-1.56); night cough: 1.17 (1.04-1.32) and 1.36 (1.14-1.62); and bronchodilator use: 1.20 (1.04-1.38) and 1.18 (0.95-1.46). Matched analysis only comparing symptomatic and asymptomatic children living at the same postcode (thus exposed to similar road traffic) showed similar ORs, suggesting that parents of children with respiratory symptoms reported more road traffic than parents of asymptomatic children. CONCLUSIONS: Our study suggests that reporting bias could explain some or even all the association between reported exposure to road traffic and disease. Over-reporting of exposure by only 10% of parents of symptomatic children would be sufficient to produce the effect sizes shown in this study. Future research should be based only on objective measurements of traffic exposure.
Resumo:
ABSTRACT: Particulate air pollution has been associated with respiratory and cardiovascular disease. Evidence for cardiovascular and neurodegenerative effects of ambient particles was reviewed as part of a workshop. The purpose of this critical update is to summarize the evidence presented for the mechanisms involved in the translocation of particles from the lung to other organs and to highlight the potential of particles to cause neurodegenerative effects.Fine and ultrafine particles, after deposition on the surfactant film at the air-liquid interface, are displaced by surface forces exerted on them by surfactant film and may then interact with primary target cells upon this displacement. Ultrafine and fine particles can then penetrate through the different tissue compartments of the lungs and eventually reach the capillaries and circulating cells or constituents, e.g. erythrocytes. These particles are then translocated by the circulation to other organs including the liver, the spleen, the kidneys, the heart and the brain, where they may be deposited. It remains to be shown by which mechanisms ultrafine particles penetrate through pulmonary tissue and enter capillaries. In addition to translocation of ultrafine particles through the tissue, fine and coarse particles may be phagocytized by macrophages and dendritic cells which may carry the particles to lymph nodes in the lung or to those closely associated with the lungs. There is the potential for neurodegenerative consequence of particle entry to the brain. Histological evidence of neurodegeneration has been reported in both canine and human brains exposed to high ambient PM levels, suggesting the potential for neurotoxic consequences of PM-CNS entry. PM mediated damage may be caused by the oxidative stress pathway. Thus, oxidative stress due to nutrition, age, genetics among others may increase the susceptibility for neurodegenerative diseases. The relationship between PM exposure and CNS degeneration can also be detected under controlled experimental conditions. Transgenic mice (Apo E -/-), known to have high base line levels of oxidative stress, were exposed by inhalation to well characterized, concentrated ambient air pollution. Morphometric analysis of the CNS indicated unequivocally that the brain is a critical target for PM exposure and implicated oxidative stress as a predisposing factor that links PM exposure and susceptibility to neurodegeneration.Together, these data present evidence for potential translocation of ambient particles on organs distant from the lung and the neurodegenerative consequences of exposure to air pollutants.
Resumo:
There is increasing evidence that air pollution particularly affects infants and small preschool children. However, detecting air pollution effects on lung function in small children is technically difficult and requires non-invasive methods that can assess lung function and inflammatory markers in larger cohorts. This review discusses the principles, usefulness and shortcomings of various lung function techniques used to detect pollution effects in small children. The majority of these techniques have been used to detect effects of the dominant indoor pollutant, tobacco exposure. However there is increasing evidence that non-invasive lung function techniques can also detect the effects of outdoor air pollution.