42 resultados para Aids to air navigation

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rationale: There is increasing evidence that short-term exposure to air pollution has a detrimental effect on respiratory health, but data from healthy populations, particularly infants, are scarce. Objectives: To assess the association of air pollution with frequency and severity of respiratory symptoms and infections measured weekly in healthy infants. Methods: In a prospective birth cohort of 366 infants of unselected mothers, respiratory health was assessed weekly by telephone interviews during the first year of life (19,106 total observations). Daily mean levels of particulate matter (PM10), nitrogen dioxide (NO2), and ozone (O3) were obtained from local monitoring stations. We determined the association of the preceding week's pollutant levels with symptom scores and respiratory tract infections using a generalized additive mixed model with an autoregressive component. In addition, we assessed whether neonatal lung function influences this association and whether duration of infectious episodes differed between weeks with normal PM10 and weeks with elevated levels. Measurements and Main Results: We found a significant association between air pollution and respiratory symptoms, particularly in the week after respiratory tract infections (risk ratio, 1.13 [1.02-1.24] per 10 μg/m(3) PM10 levels) and in infants with premorbid lung function. During times of elevated PM10 (>33.3 μg/m(3)), duration of respiratory tract infections increased by 20% (95% confidence interval, 2-42%). Conclusions: Exposure to even moderate levels of air pollution was associated with increased respiratory symptoms in healthy infants. Particularly in infants with premorbid lung function and inflammation, air pollution contributed to longer duration of infectious episodes with a potentially large socioeconomic impact.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is increasing evidence of the adverse impact of prenatal exposure to air pollution. This is of particular interest, as exposure during pregnancy--a crucial time span of important biological development--may have long-term implications. The aims of this review are to show current epidemiological evidence of known effects of prenatal exposure to air pollution and present possible mechanisms behind this process. Harmful effects of exposure to air pollution during pregnancy have been shown for different birth outcomes: higher infant mortality, lower birth weight, impaired lung development, increased later respiratory morbidity, and early alterations in immune development. Although results on lower birth weight are somewhat controversial, evidence for higher infant mortality is consistent in studies published worldwide. Possible mechanisms include direct toxicity of particles due to particle translocation across tissue barriers or particle penetration across cellular membranes. The induction of specific processes or interaction with immune cells in either the pregnant mother or the fetus may be possible consequences. Indirect effects could be oxidative stress and inflammation with consequent hemodynamic alterations resulting in decreased placental blood flow and reduced transfer of nutrients to the fetus. The early developmental phase of pregnancy is thought to be very important in determining long-term growth and overall health. So-called "tracking" of somatic growth and lung function is believed to have a huge impact on long-term morbidity, especially from a public health perspective. This is particularly important in areas with high levels of outdoor pollution, where it is practically impossible for an individual to avoid exposure. Especially in these areas, good evidence for the association between prenatal exposure to air pollution and infant mortality exists, clearly indicating the need for more stringent measures to reduce exposure to air pollution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a part of the respiratory tissue barrier, lung epithelial cells play an important role against the penetration of the body by inhaled particulate foreign materials. In most cell culture models, which are designed to study particle-cell interactions, the cells are immersed in medium. This does not reflect the physiological condition of lung epithelial cells which are exposed to air, separated from it only by a very thin liquid lining layer with a surfactant film at the air-liquid interface. In this study, A549 epithelial cells were grown on microporous membranes in a two chamber system. After the formation of a confluent monolayer the cells were exposed to air. The morphology of the cells and the expression of tight junction proteins were studied with confocal laser scanning and transmission electron microscopy. Air-exposed cells maintained monolayer structure for 2 days, expressed tight junctions and developed transepithelial electrical resistance. Surfactant was produced and released at the apical side of the air-exposed epithelial cells. In order to study particle-cell interactions fluorescent 1 microm polystyrene particles were sprayed over the epithelial surface. After 4 h, 8.8% of particles were found inside the epithelium. This fraction increased to 38% after 24 h. During all observations, particles were always found in the cells but never between them. In this study, we present an in vitro model of the respiratory tract wall consisting of air-exposed lung epithelial cells covered by a liquid lining layer with a surfactant film to study particle-cell interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Post-natal exposure to air pollution is associated with diminished lung growth during school age. The current authors aimed to determine whether pre-natal exposure to air pollution is associated with lung function changes in the newborn. In a prospective birth cohort of 241 healthy term-born neonates, tidal breathing, lung volume, ventilation inhomogeneity and exhaled nitric oxide (eNO) were measured during unsedated sleep at age 5 weeks. Maternal exposure to particles with a 50% cut-off aerodynamic diameter of 10 microm (PM(10)), nitrogen dioxide (NO(2)) and ozone (O(3)), and distance to major roads were estimated during pregnancy. The association between these exposures and lung function was assessed using linear regression. Minute ventilation was higher in infants with higher pre-natal PM(10) exposure (24.9 mL x min(-1) per microg x m(-3) PM(10)). The eNO was increased in infants with higher pre-natal NO(2) exposure (0.98 ppb per microg x m(-3) NO(2)). Post-natal exposure to air pollution did not modify these findings. No association was found for pre-natal exposure to O(3) and lung function parameters. The present results suggest that pre-natal exposure to air pollution might be associated with higher respiratory need and airway inflammation in newborns. Such alterations during early lung development may be important regarding long-term respiratory morbidity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abies alba (fir), a submontane tree from Central European mountains and uplands, is of special interest for palaeoecological and palaeoclimate interpretations due to its sensitivity to air and soil humidity. Its present distribution limit in the uplands of SE Poland is still a matter of debate. In the Holocene fir expanded to Poland very late, but early fir populations are supposed to occur in the Šumava Mts (Czech Republic). The study aims: to estimate pollen thresholds for fir presence/absence in Bohemia (Czech Republic) and Poland on the basis of modified Tauber pollen traps; to use these thresholds for tracing fir presence in two pollen diagrams from Poland (Słone and Bezedna lakes) in the border zone between the Roztocze region (with fir forest stands today) and Polesie (where fir has never played an important role); and to investigate how the percentage presence/absence threshold can be used to trace the occurrence and abundance of fir trees in the Šumava Mts based on the pollen diagrams of Rokytecká slat' and Mrtvý luh. The fir pollen thresholds estimated in terms of PAR (pollen accumulation rates or pollen influx) range from 843 (grains cm− 2 year− 1) (Roztocze) to 61 (Krkonoše) and 49 (Šumava). Percentage thresholds range from 0.3% in Krkonoše where fir trees are not present within 4 km to 22% in fir-dominated woodland of the Roztocze, providing evidence of strong underrepresentation of fir in the pollen deposition. Application of these percentage thresholds to the Słone and Bezedna pollen diagrams indicates that occurrence of fir in the region is possible from 3.5 cal ky BP onwards, though the evidence is not decisive. In the Šumava, a low representation of fir pollen (1–2%) reflecting presence of scattered fir trees was detected as early as ca. 7.0 cal ky BP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Degradation of non-volatile organic compounds-environmental toxins (methyltriclosane and phenanthrene), bovine serum albumin, as well as bioparticles (Legionella pneumophila, Bacillus subtilis, and Bacillus anthracis)-in a commercially available plasma air purifier based on a cold plasma was studied in detail, focusing on its efficiency and on the resulting degradation products. This system is capable of handling air flow velocities of up to 3.0m s(-1) (3200Lmin(-1)), much higher than other plasma-based reactors described in the literature, which generally are limited to air flow rates below 10Lmin(-1). Mass balance studies consistently indicated a reduction in concentration of the compounds/particles after passage through the plasma air purifier, 31% for phenanthrene, 17% for methyltriclosane, and 80% for bovine serum albumin. L. pneumophila did not survive passage through the plasma air purifier, and cell counts of aerosolized spores of B. subtilis and B. anthracis were reduced by 26- and 15-fold, depending on whether it was run at 10Hz or 50Hz, respectively. However rather than chemical degradation, deposition on the inner surfaces of the plasma air purifier occured. Our interpretation is that putative "degradation" efficiencies were largely due to electrostatic precipitation rather than to decomposition into smaller molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Persons with cystic fibrosis (CF) are at-risk for health effects from ambient air pollution but little is known about the interaction of nanoparticles (NP) with CF lungs. Here we study the distribution of inhaled NP in a murine CF model and aim to reveal mechanisms contributing to adverse effects of inhaled particles in susceptible populations. METHODS Chloride channel defective CftrTgH (neoim) Hgu mice were used to analyze lung function, lung distribution and whole body biokinetics of inhaled NP, and inflammatory responses after intratracheal administration of NP. Distribution of 20-nm titanium dioxide NP in lungs was assessed on ultrathin sections immediately and 24 h after a one-hour NP inhalation. NP biokinetics was deduced from total and regional lung deposition and from whole body translocation of inhaled 30-nm iridium NP within 24 h after aerosol inhalation. Inflammatory responses were assessed within 7 days after carbon NP instillation. RESULTS Cftr mutant females had moderately reduced lung compliance and slightly increased airway resistance compared to wild type mice. We found no genotype dependent differences in total, regional and head deposition or in secondary-organ translocation of inhaled iridium NP. Titanium dioxide inhalation resulted in higher NP uptake by alveolar epithelial cells in Cftr mutants. Instillation of carbon NP induced a comparable acute and transient inflammatory response in both genotypes. The twofold increase of bronchoalveolar lavage (BAL) neutrophils in Cftr mutant compared to wild type mice at day 3 but not at days 1 and 7, indicated an impaired capacity in inflammation resolution in Cftr mutants. Concomitant to the delayed decline of neutrophils, BAL granulocyte-colony stimulating factor was augmented in Cftr mutant mice. Anti-inflammatory 15-hydroxyeicosatetraenoic acid was generally significantly lower in BAL of Cftr mutant than in wild type mice. CONCLUSIONS Despite lacking alterations in lung deposition and biokinetics of inhaled NP, and absence of significant differences in lung function, higher uptake of NP by alveolar epithelial cells and prolonged, acute inflammatory responses to NP exposure indicate a moderately increased susceptibility of lungs to adverse effects of inhaled NP in Cftr mutant mice and provides potential mechanisms for the increased susceptibility of CF patients to air pollution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dentinal cracks are occasionally observed at the cut root face after root-end resection in apical surgery. The objective of this ex vivo study was to evaluate and compare the efficiency of visual aids to identify root-end dentinal cracks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Predominantly, studies of nanoparticle (NPs) toxicology in vitro are based upon the exposure of submerged cell cultures to particle suspensions. Such an approach however, does not reflect particle inhalation. As a more realistic simulation of such a scenario, efforts were made towards direct delivery of aerosols to air-liquid-interface cultivated cell cultures by the use of aerosol exposure systems. This study aims to provide a direct comparison of the effects of zinc oxide (ZnO) NPs when delivered as either an aerosol, or in suspension to a triple cell co-culture model of the epithelial airway barrier. To ensure dose–equivalence, ZnO-deposition was determined in each exposure scenario by atomic absorption spectroscopy. Biological endpoints being investigated after 4 or 24h incubation include cytotoxicity, total reduced glutathione, induction of antioxidative genes such as heme-oxygenase 1 (HO–1) as well as the release of the (pro)-inflammatory cytokine TNFα. Results Off-gases released as by-product of flame ZnO synthesis caused a significant decrease of total reduced GSH and induced further the release of the cytokine TNFα, demonstrating the influence of the gas phase on aerosol toxicology. No direct effects could be attributed to ZnO particles. By performing suspension exposure to avoid the factor “flame-gases”, particle specific effects become apparent. Other parameters such as LDH and HO–1 were not influenced by gaseous compounds: Following aerosol exposure, LDH levels appeared elevated at both timepoints and the HO–1 transcript correlated positively with deposited ZnO-dose. Under submerged conditions, the HO–1 induction scheme deviated for 4 and 24h and increased extracellular LDH was found following 24h exposure. Conclusion In the current study, aerosol and suspension-exposure has been compared by exposing cell cultures to equivalent amounts of ZnO. Both exposure strategies differ fundamentally in their dose–response pattern. Additional differences can be found for the factor time: In the aerosol scenario, parameters tend to their maximum already after 4h of exposure, whereas under submerged conditions, effects appear most pronounced mainly after 24h. Aerosol exposure provides information about the synergistic interplay of gaseous and particulate phase of an aerosol in the context of inhalation toxicology. Exposure to suspensions represents a valuable complementary method and allows investigations on particle-associated toxicity by excluding all gas–derived effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT: Particulate air pollution has been associated with respiratory and cardiovascular disease. Evidence for cardiovascular and neurodegenerative effects of ambient particles was reviewed as part of a workshop. The purpose of this critical update is to summarize the evidence presented for the mechanisms involved in the translocation of particles from the lung to other organs and to highlight the potential of particles to cause neurodegenerative effects.Fine and ultrafine particles, after deposition on the surfactant film at the air-liquid interface, are displaced by surface forces exerted on them by surfactant film and may then interact with primary target cells upon this displacement. Ultrafine and fine particles can then penetrate through the different tissue compartments of the lungs and eventually reach the capillaries and circulating cells or constituents, e.g. erythrocytes. These particles are then translocated by the circulation to other organs including the liver, the spleen, the kidneys, the heart and the brain, where they may be deposited. It remains to be shown by which mechanisms ultrafine particles penetrate through pulmonary tissue and enter capillaries. In addition to translocation of ultrafine particles through the tissue, fine and coarse particles may be phagocytized by macrophages and dendritic cells which may carry the particles to lymph nodes in the lung or to those closely associated with the lungs. There is the potential for neurodegenerative consequence of particle entry to the brain. Histological evidence of neurodegeneration has been reported in both canine and human brains exposed to high ambient PM levels, suggesting the potential for neurotoxic consequences of PM-CNS entry. PM mediated damage may be caused by the oxidative stress pathway. Thus, oxidative stress due to nutrition, age, genetics among others may increase the susceptibility for neurodegenerative diseases. The relationship between PM exposure and CNS degeneration can also be detected under controlled experimental conditions. Transgenic mice (Apo E -/-), known to have high base line levels of oxidative stress, were exposed by inhalation to well characterized, concentrated ambient air pollution. Morphometric analysis of the CNS indicated unequivocally that the brain is a critical target for PM exposure and implicated oxidative stress as a predisposing factor that links PM exposure and susceptibility to neurodegeneration.Together, these data present evidence for potential translocation of ambient particles on organs distant from the lung and the neurodegenerative consequences of exposure to air pollutants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anthropogenic nano-sized particles (NSP), ie, particles with a diameter of less than 100 nm, are generated with or without purpose as chemically and physically well-defined materials or as a consequence of combustion processes respectively. Inhalation of NSP occurs on a regular basis due to air pollution and is associated with an increase in respiratory and cardiovascular morbidity and mortality. Manufactured NSP may intentionally be inhaled as pharmaceuticals or unintentionally during production at the workplace. Hence the interactions of NSP with the respiratory tract are currently under intensive investigation. Due to special physicochemical features of NSP, its biological behaviour may differ from that of larger sized particles. Here we review two important themes of current research into the effects of NSP on the lungs: 1) The potential of NSP to cross the blood-air barrier of the lungs, thus gaining access to the circulation and extrapulmonary organs. It is currently accepted that a small fraction of inhaled NSP may translocate to the circulation. The significance of this translocation requires further research. 2) The entering mechanisms of NSP into different cell types. There is evidence that NSP are taken up by cells via well-known pathways of endocytosis but also via different mechanisms not well understood so far. Knowledge of the quantitative relationship between the different entering mechanisms and cellular responses is not yet available but is urgently needed in order to understand the effects of intentionally or unintentionally inhaled NSP on the respiratory tract.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surgical navigation has proven to be a minimally invasive procedure that enables precise surgical interventions with reduced exposure to irradiation for patient and personnel. Fluoroscopy-based modules have prevailed on the market. For certain operations of the pelvis computed tomography is necessary with its high imaging quality and considerably larger scan volume. To enable navigation in these cases, matching of the CT data set and the patient's real pelvic bone is essential. The common pair point-matching algorithm is complemented by the surface-matching algorithm to achieve an even higher overall precision of the system. For conventional surface matching with a solid pointer, the bone has to be exposed from soft tissue quite extensively, using a solid pointer. This conflicts with the claim of computer-assisted surgery to be minimally invasive. We integrated an A-mode ultrasonic pointer with the intention to perform extended surface matching on the pelvic bone noninvasively. Related to the conventional method, comparable and to some extent even improved precision conditions could be established.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bone-anchored port (BAP) is an investigational implant, which is intended to be fixed on the temporal bone and provide vascular access. There are a number of implants taking advantage of the stability and available room in the temporal bone. These devices range from implantable hearing aids to percutaneous ports. During temporal bone surgery, injuring critical anatomical structures must be avoided. Several methods for computer-assisted temporal bone surgery are reported, which typically add an additional procedure for the patient. We propose a surgical guide in the form of a bone-thickness map displaying anatomical landmarks that can be used for planning of the surgery, and for the intra-operative decision of the implant’s location. The retro-auricular region of the temporal and parietal bone was marked on cone-beam computed tomography scans and tridimensional surfaces displaying the bone thickness were created from this space. We compared this method using a thickness map (n = 10) with conventional surgery without assistance (n = 5) in isolated human anatomical whole head specimens. The use of the thickness map reduced the rate of Dura Mater exposition from 100% to 20% and OPEN ACCESS Materials 2013, 6 5292 suppressed sigmoid sinus exposures. The study shows that a bone-thickness map can be used as a low-complexity method to improve patient’s safety during BAP surgery in the temporal bone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective In order to benefit from the obvious advantages of minimally invasive liver surgery there is a need to develop high precision tools for intraoperative anatomical orientation, navigation and safety control. In a pilot study we adapted a newly developed system for computer-assisted liver surgery (CALS) in terms of accuracy and technical feasibility to the specific requirements of laparoscopy. Here, we present practical aspects related to laparoscopic computer assisted liver surgery (LCALS). Methods Our video relates to a patient presenting with 3 colorectal liver metastases in Seg. II, III and IVa who was selected in an appropriate oncological setting for LCALS using the CAScination system combined with 3D MEVIS reconstruction. After minimal laparoscopic mobilization of the liver, a 4- landmark registration method was applied to enable navigation. Placement of microwave needles was performed using the targeting module of the navigation system and correct needle positioning was confirmed by intraoperative sonography. Ablation of each lesion was carried out by application of microwave energy at 100 Watts for 1 minute. Results To acquire an accurate (less 0.5 cm) registration, 4 registration cycles were necessary. In total, seven minutes were required to accomplish precise registration. Successful ablation with complete response in all treated areas was assessed by intraoperative sonography and confirmed by postoperative CT scan. Conclusions This teaching video demonstrates the theoretical and practical key points of LCALS with a special emphasis on preoperative planning, intraoperative registration and accuracy testing by laparoscopic methodology. In contrast to mere ultrasound-guided ablation of liver lesions, LCALS offers a more dimensional targeting and higher safety control. This is currently also in routine use to treat vanishing lesions and other difficult to target focal lesions within the liver.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A water desaturation zone develops around a tunnel in water-saturated rock when the evaporative water loss at the rock surface is larger than the water flow from the surrounding saturated region of restricted permeability. We describe the methods with which such water desaturation processes in rock materials can be quantified. The water retention characteristic theta(psi) of crystalline rock samples was determined with a pressure membrane apparatus. The negative water potential, identical to the capillary pressure, psi, below the tensiometric range (psi < -0.1 MPa) can be measured with thermocouple psychrometers (TP), and the volumetric water contents, theta, by means of time domain reflectometry (TDR). These standard methods were adapted for measuring the water status in a macroscopically unfissured granodiorite with a total porosity of approximately 0.01. The measured water retention curve of granodiorite samples from the Grimsel test site (central Switzerland) exhibits a shape which is typical for bimodal pore size distributions. The measured bimodality is probably an artifact of a large surface ratio of solid/voids. The thermocouples were installed without a metallic screen using the cavity drilled into the granodiorite as a measuring chamber. The water potentials observed in a cylindrical granodiorite monolith ranged between -0.1 and -3.0 MPa; those near the wall in a ventilated tunnel between -0.1 and -2.2 MPa. Two types of three-rod TDR Probes were used, one as a depth probe inserted into the rock, the other as a surface probe using three copper stripes attached to the surface for detecting water content changes in the rock-to-air boundary. The TDR signal was smoothed with a low-pass filter, and the signal length determined based on the first derivative of the trace. Despite the low porosity of crystalline rock these standard methods are applicable to describe the unsaturated zone in solid rock and may also be used in other consolidated materials such as concrete.