8 resultados para Age, oxygen isotope

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluids are considered a fundamental agent for chemical exchanges between different rock types in the subduction system. Constraints on the sources and pathways of subduction fluids thus provide crucial information to reconstruct subduction processes. The Monviso ophiolitic sequence is composed of mafic, ultramafic and minor sediments that have been subducted to ~80 km depth. In this sequence, both localized fluid flow and channelized fluids along major shear zones have been documented. We investigate the timing and source of the fluids that affected the dominant mafic rocks using microscale U-Pb dating of zircon and oxygen isotope analysis of mineral zones (garnet, zircon and antigorite) in high pressure rocks with variable degree of metasomatic modification. In mafic eclogites, Jurassic zircon cores are the only mineralogical relicts of the protolith gabbros and retain δ18O values of 4.5–6 ‰, typical of mantle melts. Garnet and metamorphic zircon that grew during prograde to peak metamorphism display low δ18O values between 0.2 and 3.8 ‰, which are likely inherited from high-temperature alteration of the protolith on the sea floor. This is corroborated by δ18O values of 3.0 and 3.6 ‰ in antigorite from surrounding serpentinites. In metasomatised eclogites within the Lower Shear Zone, garnet rim formed at the metamorphic peak shows a shift to higher δ18O up to 6‰. The age of zircons in high-pressure veins and metasomatised eclogites constrains the timing of fluid flow at high pressure at around 45–46 Ma. Although the oxygen data do not contradict previous reports of interaction with serpentinite-derived fluids, the shift to isotopically heavier oxygen compositions requires contribution from sediment-derived fluids. The scarcity of metasediments in the Monviso sequence suggests that such fluids were concentrated and fluxed along the Lower Shear Zone in a sufficient amount to modify the oxygen composition of the eclogitic minerals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Keywords High-pressure fluids · Whiteschists · U–Pb dating · Oxygen isotopes · Ion microprobe · Metasomatism Introduction The subduction of crustal material to mantle depths and its chemical modification during burial and exhumation contribute to element recycling in the mantle and the formation of new crust through arc magmatism. Crustal rocks that Abstract The Dora-Maira whiteschists derive from metasomatically altered granites that experienced ultrahighpressure metamorphism at ~750 °C and 40 kbar during the Alpine orogeny. In order to investigate the P–T–time– fluid evolution of the whiteschists, we obtained U–Pb ages from zircon and monazite and combined those with trace element composition and oxygen isotopes of the accessory minerals and coexisting garnet. Zircon cores are the only remnants of the granitic protolith and still preserve a Permian age, magmatic trace element compositions and δ18O of ~10 ‰. Thermodynamic modelling of Si-rich and Si-poor whiteschist compositions shows that there are two main fluid pulses during prograde subduction between 20 and 40 kbar. In Si-poor samples, the breakdown of chlorite to garnet + fluid occurs at ~22 kbar. A first zircon rim directly overgrowing the cores has inclusions of prograde phlogopite and HREE-enriched patterns indicating zircon growth at the onset of garnet formation. A second main fluid pulse is documented close to peak metamorphic conditions in both Si-rich and Si-poor whiteschist when talc + kyanite react to garnet + coesite + fluid. A second metamorphic overgrowth on zircon with HREE depletion was observed in the Si-poor whiteschists, whereas a single metamorphic overgrowth capturing phengite and talc inclusions was observed in the Si-rich whiteschists. Garnet rims, zircon rims and monazite are in chemical and isotopic equilibrium for oxygen, demonstrating that they all formed at peak metamorphism at 35 Ma as constrained by the age of monazite (34.7 ± 0.4 Ma) and zircon rims (35.1 ± 0.8 Ma). The prograde zircon rim in Si-poor whiteschists has an age that is within error indistinguishable from the age of peak metamorphic conditions, consistent with a minimum rate of subduction of 2 cm/year for the Dora-Maira unit. Oxygen isotope values for zircon rims, monazite and garnet are equal within error at 6.4 ± 0.4 ‰, which is in line with closed-system equilibrium fractionation during prograde to peak temperatures. The resulting equilibrium Δ18Ozircon-monazite at 700 ± 20 °C is 0.1 ± 0.7 ‰. The in situ oxygen isotope data argue against an externally derived input of fluids into the whiteschists. Instead, fluidassisted zircon and monazite recrystallisation can be linked to internal dehydration reactions during prograde subduction. We propose that the major metasomatic event affecting the granite protolith was related to hydrothermal seafloor alteration post-dating Jurassic rifting, well before the onset of Alpine subduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oxygen isotopic composition of precipitation (δ18Oprec) is well known to be a valuable (paleo-)climate proxy. Paleosols and sediments and hemicelluloses therein have the potential to serve as archives recording the isotopic composition of paleoprecipitation. In a companion paper (Zech et al., 2014) we investigated δ18Ohemicellulose values of plants grown under different climatic conditions in a climate chamber experiment. Here we present results of compound-specific δ18O analyses of arabinose, fucose and xylose extracted from modern topsoils (n = 56) along a large humid-arid climate transect in Argentina in order to answer the question whether hemicellulose biomarkers in soils reflect δ18Oprec. The results from the field replications indicate that the homogeneity of topsoils with regard to δ18Ohemicellulose is very high for most of the 20 sampling sites. Standard deviations for the field replications are 1.5‰, 2.2‰ and 1.7‰, for arabinose, fucose and xylose, respectively. Furthermore, all three hemicellulose biomarkers reveal systematic and similar trends along the climate gradient. However, the δ18Ohemicellulose values (mean of the three sugars) do not correlate positively with δ18Oprec (r = −0.54, p < 0.014, n = 20). By using a Péclet-modified Craig-Gordon (PMCG) model it can be shown that the δ18Ohemicellulose values correlate highly significantly with modeled δ18Oleaf water values (r = 0.81, p < 0.001, n = 20). This finding suggests that hemicellulose biomarkers in (paleo-)soils do not simply reflect δ18Oprec but rather δ18Oprec altered by evaporative 18O enrichment of leaf water due to evapotranspiration. According to the modeling results, evaporative 18O enrichment of leaf water is relatively low (∼10‰) in the humid northern part of the Argentinian transect and much higher (up to 19‰) in the arid middle and southern part of the transect. Model sensitivity tests corroborate that changes in relative air humidity exert a dominant control on evaporative 18O enrichment of leaf water and thus δ18Ohemicellulose, whereas the effect of temperature changes is of minor importance. While oxygen exchange and degradation effects seem to be negligible, further factors needing consideration when interpreting δ18Ohemicellulose values obtained from (paleo-)soils are evaporative 18O enrichment of soil water, seasonality effects, wind effects and in case of abundant stem/root-derived organic matter input a partial loss of the evaporative 18O enrichment of leaf water. Overall, our results prove that compound-specific δ18O analyses of hemicellulose biomarkers in soils and sediments are a promising tool for paleoclimate research. However, disentangling the two major factors influencing δ18Ohemicellulose, namely δ18Oprec and relative air humidity controlled evaporative 18O enrichment of leaf water, is challenging based on δ18O analyses alone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stable oxygen isotope composition of atmospheric precipitation (δ18Op) was scrutinized from 39 stations distributed over Switzerland and its border zone. Monthly amount-weighted δ18Op values averaged over the 1995–2000 period showed the expected strong linear altitude dependence (−0.15 to −0.22‰ per 100 m) only during the summer season (May–September). Steeper gradients (~ −0.56 to −0.60‰ per 100 m) were observed for winter months over a low elevation belt, while hardly any altitudinal difference was seen for high elevation stations. This dichotomous pattern could be explained by the characteristically shallower vertical atmospheric mixing height during winter season and provides empirical evidence for recently simulated effects of stratified atmospheric flow on orographic precipitation isotopic ratios. This helps explain "anomalous" deflected altitudinal water isotope profiles reported from many other high relief regions. Grids and isotope distribution maps of the monthly δ18Op have been calculated over the study region for 1995–1996. The adopted interpolation method took into account both the variable mixing heights and the seasonal difference in the isotopic lapse rate and combined them with residual kriging. The presented data set allows a point estimation of δ18Op with monthly resolution. According to the test calculations executed on subsets, this biannual data set can be extended back to 1992 with maintained fidelity and, with a reduced station subset, even back to 1983 at the expense of faded reliability of the derived δ18Op estimates, mainly in the eastern part of Switzerland. Before 1983, reliable results can only be expected for the Swiss Plateau since important stations representing eastern and south-western Switzerland were not yet in operation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study provides a continuous lateglacial and Holocene record of diatom silica oxygen isotope changes (delta O-18(DIAT)) in a subalpine lake sediment sequence obtained from the Retezat Mts (Taul dintre Brazi, 1740 m a.s.l.). This through-flow, shallow, high-altitude lake with a surface area of only 0.4 ha has short water residence time and is predominantly fed by snowmelt and rainwater. Its delta O-18(DIAT) record principally reflects the oxygen isotope composition of the winter and spring precipitation, as diatom blooms occur mainly in the spring and early summer. Hence, changes in delta O-18(DIAT) are interpreted as seasonal scale changes: in the amount of winter precipitation. Low oxygen isotope values (27-28.5 parts per thousand) occurred during the lateglacial until 12,300 cal BP, followed by a sharp increase thereafter. In the Holocene delta O-18(DIAT) values ranged from 29 to 31 parts per thousand until 3200 cal BP, followed by generally lower values during the late Holocene (27-30 parts per thousand). Short-term decreases in the isotopic values were found between 10,140-9570, 9000-8500, 7800-7300, 6300-5800, 5500-5000 and at 8015, 4400, 4000 cal BP. After 3200 cal BP a decreasing trend was visible with the lowest values between 3100-2500 and after 2100 cal BP The general trend in the record suggests that contribution of winter precipitation was generally lower between 11,680 and 3200 cal BP, followed by increased contribution during the last millennia. The late Holocene decrease in delta O-18(DIAT) shows good agreement with the speleothem delta O-18, lake level and testate amoebae records from the Carpathian Mountains that also display gradual delta O-18 decrease and lake level/mire water table level rise after 3200 cal BR Strong positive correlation with North Atlantic circulation and solar activity proxies, such as the Austrian and Hungarian speleothem records, furthermore suggested that short-term increases in the isotopic ratios in the early and mid Holocene are likely connectable to high solar activity phases and high frequency of positive North Atlantic Oscillation indexes that may have resulted in decreased winter precipitation in this region.