6 resultados para Aerobacter-aerogenes

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to improve the definition and identification of a group of veterinarily important bacteria referred to as the [Pasteurella] aerogenes-[Pasteurella] mairii-[Actinobacillus] rossii complex. These organisms have mainly been isolated from the reproductive and intestinal tracts of pigs and in most cases have been considered as opportunistic pathogens. A collection of 87 strains were characterized by phenotypic analysis from which 41 strains were selected for 16S rRNA gene sequence comparison, out of which 23 have been sequenced in the present study. One group of 21 strains phenotyped as biovars 1, 3-5, 9-11, 19 and 25-27, including the type strain of [P.] aerogenes, showed 16S rRNA gene sequence similarities of 99.6 % or higher; another group of 18 strains including biovars 2, 6-8, 12-15, 21, 23, 24 and 26A and the type strain of [A.] rossii showed 97.8 % or higher 16S rRNA gene sequence similarity. Between the two groups, 93.8-95.7 % 16S rRNA gene sequence similarity was observed. Strains of [P.] mairii showed 99.5 % similarity, with 95.5-97.2 and 93.8-95.5 % similarity to strains of [P.] aerogenes and [A.] rossii, respectively. Four strains could not be classified with any of these groups and belonged to other members of Pasteurellaceae. Comparisons were also made to DNA-DNA hybridization data. Biovars 1, 9, 10, 11 and 19, including the type strain of [P.] aerogenes, linked at 70 % DNA reassociation, whereas strains identified as biovars 2, 6, 7, 8, 12, 15 and 21 of [P.] aerogenes linked at 81 %. The latter group most likely represents [A.] rossii based on the 16S rRNA gene sequence comparisons. DNA reassociation between the [P.] aerogenes and [A.] rossii groups was at most 37 %, whereas 47 % was the highest DNA reassociation found between [P.] aerogenes and [P.] mairii. The study showed that [P.] aerogenes, [P.] mairii and [A.] rossii can not be easily separated and may consequently be misidentified based on current knowledge of their phenotypic characteristics. In addition, these taxa are difficult to separate from other taxa of the Pasteurellaceae. A revised scheme for separation based upon phenotypic characters is suggested for the three species [P.] aerogenes emend., [P.] mairii emend. and [A.] rossii emend., with the respective type strains ATCC 27883T, NCTC 10699T and ATCC 27072T.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pasteurella aerogenes is known as a commensal bacterium or as an opportunistic pathogen, as well as a primary pathogen found to be involved in abortion cases of humans, swine, and other mammals. Using broad-range DNA probes for bacterial RTX toxin genes, we cloned and subsequently sequenced a new operon named paxCABD encoding the RTX toxin PaxA in P. aerogenes. The pax operon is organized analogous to the classical RTX operons containing the activator gene paxC upstream of the structural toxin gene paxA, which is followed by the secretion protein genes paxB and paxD. The highest sequence similarity of paxA with known RTX toxin genes is found with apxIIIA (82%). PaxA is structurally similar to ApxIIIA and also shows functional analogy to ApxIIIA, since it shows cohemolytic activity with the sphingomyelinase of Staphylococcus aureus, known as the CAMP effect, but is devoid of direct hemolytic activity. In addition, it shows to some extent immunological cross-reactions with ApxIIIA. P. aerogenes isolated from various specimens showed that the pax operon was present in about one-third of the strains. All of the pax-positive strains were specifically related to swine abortion cases or septicemia of newborn piglets. These strains were also shown to produce the PaxA toxin as determined by the CAMP phenomenon, whereas none of the pax-negative strains did. This indicated that the PaxA toxin is involved in the pathogenic potential of P. aerogenes. The examined P. aerogenes isolates were phylogenetically analyzed by 16S rRNA gene (rrs) sequencing in order to confirm their species. Only a small heterogeneity (<0.5%) was observed between the rrs genes of the strains originating from geographically distant farms and isolated at different times.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Strains of [Actinobacillus] rossii, [Pasteurella] mairii and [Pasteurella] aerogenes can be isolated from abortion in swine. The RTX toxin Pax has previously been found only in those [P.] aerogenes strains isolated from abortion. Nothing is known about RTX toxins in field isolates of the other two species. To gain insight into the distribution of selected RTX toxin genes and their association with abortion, PCR screening for the pax, apxII and apxIII operons on 21 [A.] rossii and seven [P.] mairii isolates was done. Since species can be phenotypically misidentified, the study was backed up by a phylogenetic analysis of all strains based on 16S rRNA, rpoB and infB genes. The pax gene was detected in all [P.] mairii but not in [A.] rossii strains. No apx genes were found in [P.] mairii but different gene combinations for apx were detected in [A.] rossii strains. Most of these strains were positive for apxIII, either alone or in combination with apxII. Whereas pax was found to be associated to strains from abortion no such indication could be found with apx in [A.] rossii strains. Phylogenetically [A.] rossii strains formed a heterogeneous cluster separated from Actinobacillus sensu stricto. [P.] mairii strains clustered with [P.] aerogenes but forming a separate branch. The fact that [P.] aerogenes, [P.] mairii and [A.] rossii can phylogenetically clearly be identified and might contain distinct RTX toxin genes allows their proper diagnosis and will further help to investigate their role as pathogens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Early detection of bloodstream infections (BSI) is crucial in the clinical setting. Blood culture remains the gold standard for diagnosing BSI. Molecular diagnostic tools can contribute to a more rapid diagnosis in septic patients. Here, a multiplex real-time PCR-based assay for rapid detection of 25 clinically important pathogens directly from whole blood in <6 h is presented. Minimal analytical sensitivity was determined by hit rate analysis from 20 independent experiments. At a concentration of 3 CFU/ml a hit rate of 50% was obtained for E. aerogenes and 100% for S. marcescens, E. coli, P. mirabilis, P. aeruginosa, and A. fumigatus. The hit rate for C. glabrata was 75% at 30 CFU/ml. Comparing PCR identification results with conventional microbiology for 1,548 clinical isolates yielded an overall specificity of 98.8%. The analytical specificity in 102 healthy blood donors was 100%. Although further evaluation is warranted, our assay holds promise for more rapid pathogen identification in clinical sepsis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pasteurellaceae species particularly of porcine origin which are closely related to Actinobacillus pleuropneumoniae were analyzed for the presence of analogues to the major A. pleuropneumoniae RTX toxin genes, apxICABD, apxIICA and apxIIICABD and for their expression. Actinobacillus suis contains both apxICABD(var.suis) and apxIICA(var. suis) operons and was shown to produce ApxI and ApxII toxin. Actinobacillus rossii contained the operons apxIICA(var.rossii) and apxIIICABD(var.rossii). However, only the toxin ApxII and not ApxIII could be detected in cultures of A. rossii. The Apx toxins found in A. suis and A. rossi may play a role in virulence of these pathogens. Actinobacillus lignieresii, which was included since it is phylogenetically very closely related to A. pleuropneumoniae, was found to contain a full apxICABD(var.lign.) operon which however lacks the -35 and -10 boxes in the promoter sequences. As expected from these results, no expression of ApxI was detected in A. lignieresii grown under standard culture conditions. Actinobacillus seminis, Actinobacillus equuli, Pasteurella aerogenes, Pasteurella multocida, Haemophilus parasuis, and also Mannheimia (Pasteurella) haemolytica, which is known to secrete leukotoxin, were all shown to be devoid of any of the apx toxin genes and did not produce ApxI, ApxII or ApxIII toxin proteins. However, proteins of slightly lower molecular mass than ApxI, ApxII and ApxIII which showed limited cross-reactions with monospecific, polyclonal anti-ApxI, anti-ApxII and anti-ApxIII were detected on immunoblot analysis of A. equuli, A. seminis and P. aerogenes. The presence of Apx toxins and proteins that imunologically cross react with Apx toxins in porcine Actinobacillus species other than A. pleuropneumoniae can be expected to interfere with serodiagnosis of porcine pleuropneumonia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Volatile organic compounds (VOCs) released by soil microorganisms influence plant growth and pathogen resistance. Yet, very little is known about their influence on herbivores and higher trophic levels. We studied the origin and role of a major bacterial VOC, 2,3-butanediol (2,3-BD), on plant growth, pathogen and herbivore resistance, and the attraction of natural enemies in maize. One of the major contributors to 2,3-BD in the headspace of soil-grown maize seedlings was identified as Enterobacter aerogenes, an endophytic bacterium that colonizes the plants. The production of 2,3-BD by E. aerogenes rendered maize plants more resistant against the Northern corn leaf blight fungus Setosphaeria turcica. On the contrary, E. aerogenes-inoculated plants were less resistant against the caterpillar Spodoptera littoralis. The effect of 2,3-BD on the attraction of the parasitoid Cotesia marginiventris was more variable: 2,3-BD application to the headspace of the plants had no effect on the parasitoids, but application to the soil increased parasitoid attraction. Furthermore, inoculation of seeds with E. aerogenes decreased plant attractiveness, whereas inoculation of soil with a total extract of soil microbes increased parasitoid attraction, suggesting that the effect of 2,3-BD on the parasitoid is indirect and depends on the composition of the microbial community.