83 resultados para Adverse drug reaction
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The spectrum of cutaneous adverse drug reactions (cADRs) ranges from benign presentations to severe life-threatening forms such as toxic epidermal necrolysis (TEN). In TEN, granulysin has been shown to be the key cytotoxic molecule. Still, little is known about the expression of granulysin in other cADRs. As an important source of granulysin, natural killer (NK) cells are of major interest in cADRs. Recently, NKp46 has been identified as the most selective NK-cell marker. However, the role of NKp46(+) cells in cADRs and their contribution to granulysin expression remain to be elucidated.
Resumo:
The antithyroid drugs mainly include thioimidazole (carbimazole, methimazole=thiamazole) and propylthiouracil. After absorption, carbimazole is rapidly metabolized to methimazole and thus switching between these two drugs should not be considered in case of side effects. Furthermore, in case of side effects, sometimes even cross reactions between thioimidazoles and propylthiouracil occur. Common and typical adverse reactions of antithyroid drugs include dose dependent hypothyroidism and thus thyroid function should be repeatedly checked while the patient is on antithyroid drugs. Furthermore, pruritus and rash may develop. In this case, one might try to switch from thioimidazoles to propylthiouracil or vice versa. Antithyroid drugs may cause mild dose dependent neutropenia or severe allergy-mediated agranulocytosis, which typically occurs during the first three months of treatment, has an incidence of 3 per 10,000 patients and cross reactivity between thioimidazoles to propylthiouracil may occur. Rarely, antithyroid drugs can cause aplastic anemia. Mainly propylthiouracil, but sometimes also methimazole may lead to an asymptomatic transient increase in liver enzymes or to severe, even lethal liver injury of cholestatic or hepatocellular pattern. Since propylthiouracil associated liver injury was observed increasingly among children and adolescent, it has been suggested to prefer thioimidazoles for these patients. Because of these potential serious adverse effects, physicians should advise patients to immediately seek medical help if they get a fever or sore throat or malaise, abdominal complaints or jaundice, respectively. Furthermore, arthralgias may develop in 1-5% of patients under both antithyroid drugs. Since arthralgias may be the first symptom of more serious immunologic side effects, it is recommended to stop the antithyroid drug in this case. Drug induced polyarthritis mainly develops during the first month of therapy, whereas ANCA-positive vasculitis is generally observed only after long term exposure to propylthiouracil or very rarely with the thioimidazoles. The teratogenic risk of the thioimidazoles is somewhat higher (Aplasia cutis congenita), that is why one generally recommends preferring propylthiouracil during pregnancy. During breast feeding both, thioimidazoles or propylthiouracil, may be administered. Nowadays, perchlorate is only used short term in case of latent hyperthyroidism before administering iodine-containing contrast agents. Therefore, the known side effects, which usually are only observed after long term treatment, are not an issue any more.
Resumo:
Patients with liver cirrhosis may be at risk for potential drug-drug interactions (pDDIs) and/or adverse drug reactions (ADRs) due to the severity of their disease and comorbidities associated with polypharmacy.
Resumo:
In clinical routine, adverse drug reactions (ADR) are common, and they should be included in the differential diagnosis in all patients undergoing drug treatment. Only part of those ADR are immune-mediated hypersensitivity reactions and thus true drug allergies. Far more common are non-immune-mediated ADR, e.g. due to the pharmacological properties of the drug or to the individual predisposition of the patient (enzymopathies, cytokine dysbalance, mast cell hyperreactivity). In true drug allergiesT cell- and immunoglobulin E (lgE)-mediated reactions dominate the clinical presentation. T cell-mediated ADR usually have a delayed appearance and include skin eruptions in most cases. Nevertheless, it should not be forgotten that they may involve systemic T cell activation and thus take a severe, sometimes lethal turn. Clinical danger signs are involvement of mucosal surfaces, blistering within the exanthematous skin areas and systemic symptoms, e.g. fever or malaise. Drug presentation via antigen-presenting cells to T cells can either involve the classical pathway of haptenization of endogenous proteins or be directly mediated via noncovalent binding to immune receptors (MHC molecules or T cell receptors), the so-called p-i concept. Flare-up reactions during the acute phase of T cell-mediated ADR should not be mistaken for true drug allergies, as they only occur in the setting of a highly activated T cell pool. IgE-mediated ADR are less frequent and involve mast cells and/or basophils as peripheral effector cells. Recent data suggest that certain patients with drug allergy have a preexistent sensitization although they have never been exposed to the culprit drug, probably due to cross-reactivity. Thus, allergic drug reactions on first encounter are possible. In general, the extent of cross-reactivity is higher in IgE-compared to T cell-mediated ADR. Based on a specific ethnic background and only for severe T cell-mediated ADR to certain drugs, a strong HLA association has been established recently.
Resumo:
To assess drug-related problems in patients with liver cirrhosis by investigating the prevalence of inadequately dosed drugs and their association with adverse drug reactions (ADRs) and hospitalizations.
Resumo:
INTRODUCTION Erythema exsudativum multiforme majus (EEMM) and Stevens-Johnson Syndrome (SJS) are severe cutaneous reaction patterns caused by infections or drug hypersensitivity. The mechanism by which widespread keratinocyte death is mediated by the immune system in EEMM/SJS are still to be elucidated. Here, we characterized the blister cells isolated from a patient with EEMM/SJS overlap and investigated its cause. METHODS Clinical classification of the cutaneous eruption was done according to the consensus definition of severe blistering skin reactions and histological analysis. Common infectious causes of EEMM were investigated using standard clinical techniques. T cell reactivity for potentially causative drugs was assessed by lymphocyte transformation tests (LTT). Lymphocytes isolated from blister fluid were analyzed for their expression of activation markers and cytotoxic molecules using flow cytometry. RESULTS The healthy 58 year-old woman suffered from mild respiratory tract infection and therefore started treatment with the secretolytic drug Ambroxol. One week later, she presented with large palmar and plantar blisters, painful mucosal erosions, and flat atypical target lesions and maculae on the trunc, thus showing the clinical picture of an EEMM/SJS overlap (Fig. 1). This diagnosis was supported by histology, where also eosinophils were found to infiltrate the upper dermis, thus pointing towards a cutaneous adverse drug reaction (cADR). Analysis of blister cells showed that they mainly consisted of CD8+ and CD4+ T cells and a smaller population of NK cells. Both the CD8+ T cells and the NK cells were highly activated and expressed Fas ligand and the cytotoxic molecule granulysin (Fig. 2). In addition, in comparison to NK cells from PBMC, NK cells in blister fluids strongly upregulated the expression of the skin-homing chemokine receptor CCR4 (Fig 4). Surprisingly, the LTT performed on PBMCs in the acute phase was positive for Ambroxol (SI=2.9) whereas a LTT from a healthy but exposed individual did not show unspecific proliferation. Laboratory tests for common infectious causes of EEMM were negative (HSV-1/-2, M. pneumoniae, Parvovirus B19). However, 6 weeks later, specific proliferation to Ambroxol could no longer be observed in the LTT (Fig 4.).
Resumo:
Anthracyclines are used in over 50% of childhood cancer treatment protocols, but their clinical usefulness is limited by anthracycline-induced cardiotoxicity (ACT) manifesting as asymptomatic cardiac dysfunction and congestive heart failure in up to 57% and 16% of patients, respectively. Candidate gene studies have reported genetic associations with ACT, but these studies have in general lacked robust patient numbers, independent replication or functional validation. Thus, the individual variability in ACT susceptibility remains largely unexplained. We performed a genome-wide association study in 280 patients of European ancestry treated for childhood cancer, with independent replication in similarly treated cohorts of 96 European and 80 non-European patients. We identified a nonsynonymous variant (rs2229774, p.Ser427Leu) in RARG highly associated with ACT (P = 5.9 × 10(-8), odds ratio (95% confidence interval) = 4.7 (2.7-8.3)). This variant alters RARG function, leading to derepression of the key ACT genetic determinant Top2b, and provides new insight into the pathophysiology of this severe adverse drug reaction.
Resumo:
Clinicians commonly encounter patients who report to have drug allergy. In a large part, such allergy corresponds to adverse drug reactions, which are not immune mediated. The incriminated drug need not always be avoided for further therapy. On the other hand, drug allergy may manifest in many unexpected clinical pictures and thus not be recognized. There is no single standardized diagnostic test to confirm the immune-mediated mechanism and to identify the causative drug. Therefore, immune-mediated drug hypersensitivity reactions and their causative drugs have to be considered by the constellation of exposure, timing, and clinical features, including the pattern of organ manifestation. Prior experience with the drug is also an important feature. An allergologic workup with additional investigation may provide some help. Patients should be informed carefully about their drug allergy, whereby symptoms, drug that elicits reaction, modes of diagnosis of drug allergy, and possibly alternatives should be indicated in their allergy passport.
Resumo:
INTRODUCTION Herbal and dietary supplements are widely used as measures to improve and preserve health and well-being. Among the bestselling preparations are dietary supplement containing glucosamine and chondroitine sulfate taken to improve symptoms of osteoarthritis. METHODS AND RESULTS We here present a case of a male patient with biopsy-proven acute and severe autoimmune hepatitis subsequent to intake of a preparation containing glucosamine and chondroitine sulfate. Response to steroids was favorable and resulted in complete remission of the patient. Diagnostic work-up of the case revealed no other possible cause of liver injury, and causality assessment using the Roussel Uclaf Causality Assessment Method (RUCAM) resulted in a possible causal relationship between intake of glucosamine and chondroitine sulfate and the adverse hepatic reaction. CONCLUSION The present case recalls that products containing glucosamine and chondroitine sulfate can occasionally cause acute liver injury mimicking autoimmune hepatitis, and reminds of the potential dangers of compounds with poor efficacy and ill-defined safety records.
Resumo:
Cytochrome P450 3A4 (CYP3A4), the major P450 present in human liver metabolizes approximately half the drugs in clinical use and requires electrons supplied from NADPH through NADPH-P450 reductase (POR, CPR). Mutations in human POR cause a rare form of congenital adrenal hyperplasia from diminished activities of steroid metabolizing P450s. In this study we examined the effect of mutations in POR on CYP3A4 activity. We used purified preparations of wild type and mutant human POR and in vitro reconstitution with purified CYP3A4 to perform kinetic studies. We are reporting that mutations in POR identified in patients with disordered steroidogenesis/Antley-Bixler syndrome (ABS) may reduce CYP3A4 activity, potentially affecting drug metabolism in individuals carrying mutant POR alleles. POR mutants Y181D, A457H, Y459H, V492E and R616X had more than 99% loss of CYP3A4 activity, while POR mutations A287P, C569Y and V608F lost 60-85% activity. Loss of CYP3A4 activity may result in increased risk of drug toxicities and adverse drug reactions in patients with POR mutations.
Resumo:
There is a growing discussion surrounding the issue of personalized approaches to drug prescription based on an individual's genetic makeup. This field of investigation has focused primarily on identifying genetic factors that influence drug metabolism and cellular disposition, thereby contributing to dose-dependent toxicities and/or variable drug efficacy. However, pharmacogenetic approaches have also proved valuable in predicting drug hypersensitivity reactions in selected patient populations, including HIV-infected patients receiving long-term antiretroviral therapy. In this instance, susceptibility has been strongly linked to genetic loci involved in antigen recognition and presentation to the immune system--most notably within the major histocompatibility complex (MHC) region--consistent with the notion that hypersensitivity reactions represent drug-specific immune responses that are largely dose independent. Here the authors describe their experiences with the development of pharmacogenetic approaches to hypersensitivity reactions associated with abacavir and nevirapine, two commonly prescribed antiretroviral drugs. It is demonstrated that prospective screening tests to identify and exclude individuals with a certain genetic makeup may be largely successful in decreasing or eliminating incidence of these adverse drug reactions in certain populations. This review also explores the broader implications of these findings.
Resumo:
Maculopapular (exanthematous) reactions are the most common adverse drug eruptions affecting the skin. Several studies indicate that immunological mechanisms including cytotoxic T cells (CD4+ > CD8+), both type 1 (e.g. IFN- γ ) and type 2 (e.g. IL-5) cytokines and various chemokines are critically involved in the pathogenesis of these eruptions. While maculopapular exanthems can virtually be elicited by any drug, antimicrobials (e.g. Β -lactam antibiotic, sulfonamides), anticonvulsants, allopurinol, and NSAIDs are most frequently involved. Clinical manifestations are variable and range from faint macules to widespread erythematous and maculopapular lesions, which usually begin on the trunk, neck and upper extremities and subsequently spread downwards in a symmetrical fashion. Although the clinical course is often relatively mild, these exanthems may sometimes progress to erythroderma or represent the beginning of even more severe drug reactions like Stevens-Johnson syndrome, toxic epidermal necrolysis or a drug rash with eosinophilia and systemic symptoms. In most cases, management includes early withdrawal of the offending drug and usually supportive treatment with emollients, topical corticosteroids and systemic antihistamines depending on the severity of the eruption. Allergological work-up is recommended to provide the patient with appropriate information about the causative drug and possible alternatives for future use.
Resumo:
Diagnosis of drug allergy involves first the recognition of sometimes unusual symptoms as drug allergy and, second, the identification of the eliciting drug. This is an often difficult task, as the clinical picture and underlying pathomechanisms are heterogeneous. In clinical routine, physicians frequently have to rely upon a suggestive history and eventual provocation tests, both having their specific limitations. For this reason both in vivo (skin tests) and in vitro tests are investigated intensively as tools to identify the disease-eliciting drug. One of the tests evaluated in drug allergy is the basophil activation test (BAT). Basophils with their high-affinity IgE receptors are easily accessible and therefore can be used as indicator cells for IgE-mediated reactions. Upon allergen challenge and cross-linking of membrane-bound IgE antibodies (via Fc-epsilon-RI) basophils up-regulate certain activation markers on their surface such as CD63 and CD203c, as well as intracellular markers (eg, phosphorylated p38MAPK). In BAT, these alterations can be detected rapidly on a single-cell basis by multicolor flow cytometry using specific monoclonal antibodies. Combining this technique with in vitro passive sensitization of donor basophils with patients' serum, one can prove the IgE dependence of a drug reaction. This article summarizes the authors' current experience with the BAT in the diagnostic management of immediate-type drug allergy mediated by drug-specific IgE antibodies.
Resumo:
BACKGROUND: The most prevalent drug hypersensitivity reactions are T-cell mediated. The only established in vitro test for detecting T-cell sensitization to drugs is the lymphocyte transformation test, which is of limited practicability. To find an alternative in vitro method to detect drug-sensitized T cells, we screened the in vitro secretion of 17 cytokines/chemokines by peripheral blood mononuclear cells (PBMC) of patients with well-documented drug allergies, in order to identify the most promising cytokines/chemokines for detection of T-cell sensitization to drugs. METHODS: Peripheral blood mononuclear cell of 10 patients, five allergic to beta-lactams and five to sulfanilamides, and of five healthy controls were incubated for 3 days with the drug antigen. Cytokine concentrations were measured in the supernatants using commercially available 17-plex bead-based immunoassay kits. RESULTS: Among the 17 cytokines/chemokines analysed, interleukin-2 (IL-2), IL-5, IL-13 and interferon-gamma (IFN-gamma) secretion in response to the drugs were significantly increased in patients when compared with healthy controls. No difference in cytokine secretion patterns between sulfonamide- and beta-lactam-reactive PBMC could be observed. The secretion of other cytokines/chemokines showed a high variability among patients. CONCLUSION: The measurement of IL-2, IL-5, IL-13 or IFN-gamma or a combination thereof might be a useful in vitro tool for detection of T-cell sensitization to drugs. Secretion of these cytokines seems independent of the type of drug antigen and the phenotype of the drug reaction. A study including a higher number of patients and controls will be needed to determine the exact sensitivity and specificity of this test.