2 resultados para Adhesive Proteins

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cardiovascular diseases involve abnormal cell-cell interactions leading to the development of atherosclerotic plaque, which when ruptured causes massive platelet activation and thrombus formation. Parts of a loose thrombus may detach to form an embolus, blocking circulation at a more distant point. The integrins are a family of adhesive cell receptors interacting with adhesive proteins or with counterreceptors on other cells. There is now solid evidence that the major integrin on platelets, the fibrinogen receptor alpha IIb beta 3, has an important role in several aspects of cardiovascular diseases and that its regulated inhibition leads to a reduction in incidence and mortality due to these disorders. The development of alpha IIb beta 3 inhibitors is an important strategy of many pharmaceutical companies which foresee a large market for the treatment of acute conditions in surgery, the symptoms of chronic conditions and, it is hoped, maybe even the successful prophylaxis of these conditions. Although all the associated problems have not been solved, the undoubted improvements in patient care resulting from the first of these treatments in the clinic have stimulated further research on the role of integrins on other vascular cells in these processes and in the search for new inhibitors. Both the development of specific inhibitors and of mice with specific integrin subunit genes ablated have contributed to a better understanding of the function of integrins in development of the cardiovascular system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Activated platelets bind numerous adhesive and procoagulant proteins by receptor-mediated processes. Although there is little evidence to suggest that these processes are heterogeneous in platelets, we previously found that platelets co-stimulated with collagen and thrombin express functional alpha-granule factor V only on a subpopulation of cells. Here we show that these cells, referred to as 'COAT-platelets', bind additional alpha-granule proteins, including fibrinogen, von Willebrand factor, thrombospondin, fibronectin and alpha2-antiplasmin. These proteins are all transglutaminase substrates, and inhibitors of transglutaminase prevent the production of COAT-platelets. A synthetic transglutaminase substrate (CP15) also binds to COAT-platelets, and analysis by high performance liquid chromatography/mass spectrometry shows that a product is formed with a relative molecular mass (Mr) equal to CP15 plus 176. Serotonin, an abundant component of platelet-dense granules, has an Mr of 176, and fibrinogen isolated from COAT-platelets contains covalently linked serotonin. Synthetic bovine serum albumin-(serotonin)6 binds selectively to COAT-platelets and also inhibits the retention of procoagulant proteins on COAT-platelets. These data indicate that COAT-platelets use serotonin conjugation to augment the retention of procoagulant proteins on their cell surface through an as yet unidentified serotonin receptor.