5 resultados para Active Learning
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The purpose of the internet-based teachware mySCM is that students of economics, informatics and industrial engineering get familiar with quantitative methods for supply chain management. Input-output-relationships of various optimization methods can be detected by sampling input values, parameters, and alternative methods for the same problem. Students can gain extra benefits by passing so-called mini-exams that motivate active learning. mySCM can be used for free, round-the-clock, and any place where access to the Internet is available.
Resumo:
Smart homes for the aging population have recently started attracting the attention of the research community. The "health state" of smart homes is comprised of many different levels; starting with the physical health of citizens, it also includes longer-term health norms and outcomes, as well as the arena of positive behavior changes. One of the problems of interest is to monitor the activities of daily living (ADL) of the elderly, aiming at their protection and well-being. For this purpose, we installed passive infrared (PIR) sensors to detect motion in a specific area inside a smart apartment and used them to collect a set of ADL. In a novel approach, we describe a technology that allows the ground truth collected in one smart home to train activity recognition systems for other smart homes. We asked the users to label all instances of all ADL only once and subsequently applied data mining techniques to cluster in-home sensor firings. Each cluster would therefore represent the instances of the same activity. Once the clusters were associated to their corresponding activities, our system was able to recognize future activities. To improve the activity recognition accuracy, our system preprocessed raw sensor data by identifying overlapping activities. To evaluate the recognition performance from a 200-day dataset, we implemented three different active learning classification algorithms and compared their performance: naive Bayesian (NB), support vector machine (SVM) and random forest (RF). Based on our results, the RF classifier recognized activities with an average specificity of 96.53%, a sensitivity of 68.49%, a precision of 74.41% and an F-measure of 71.33%, outperforming both the NB and SVM classifiers. Further clustering markedly improved the results of the RF classifier. An activity recognition system based on PIR sensors in conjunction with a clustering classification approach was able to detect ADL from datasets collected from different homes. Thus, our PIR-based smart home technology could improve care and provide valuable information to better understand the functioning of our societies, as well as to inform both individual and collective action in a smart city scenario.
Resumo:
The present study seeks to obtain deeper insight into the learning processes in practical training in primary teacher education in Upper Austria. Based on the offer-and-use model of instruction, 230 diary entries of 46 student teachers (28 students in their third semester, 18 students in their fifth semester) were analysed with legard to the learning topics, learning sourcesJ and Ìealning processes involved in practical training. The results show a variety of learning forms, ranging from the unreflective imitation of school mentors' practices to active knowledge construction. In addition, they illustrate that the available learning offers were suboptimally utilized by stuclent teachers who failed to work systernatically and continuously on their professional development.