12 resultados para Action mechanism

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The pathogenesis of multifocal motor neuropathy (MMN) has yet to be established. MMN patients often carry anti-GM1 IgM antibodies, suggesting an autoimmune process involving complement. Intravenous immunoglobulin (IVIG) is the first line treatment, but its action mechanism is unknown.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Solutions containing tin and fluoride exhibit remarkable anti-erosive properties with tin ions as a major agent. To elucidate its mechanism of action in dentine, the tin uptake on and in the tissue was investigated and related to histological findings and substance loss. Samples were treated twice daily, each treatment lasting for 2 min, with fluoride solutions [pH 4.5; 1,500 parts per million (p.p.m.) F] containing 2,100, 1,400, or 400 p.p.m. Sn as SnCl(2). In experiments 1 and 2, samples were eroded with citric acid (pH 2.3) six times each day, each treatment lasting for 5 min; in experiment 2, the demineralized organic matrix was continuously digested by collagenase; in experiment 3, no erosive challenges were performed. Sample surfaces and cross-sections were investigated using energy dispersive X-ray spectroscopy, scanning electron microscopy, and profilometry. Surface retention of tin was found in almost all treatment groups and was highest in experiment 2. On cross-sections, tin was retained within the organic matrix; in mineralized areas, tin was found mainly within a depth of 10 mum. Test solutions inhibited substance loss significantly; in experiment 2, the effect was dose-dependent. Erosion inhibition seemed to depend mainly on the incorporation of tin in the mineralized dentine when the organic portion was preserved, but on surface precipitation when the organic portion was continuously digested.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Structure-activity relationship studies were carried out by chemical modification of manzamine A (1), 8-hydroxymanzamine A (2), manzamine F (14), and ircinal isolated from the sponge Acanthostrongylophora. The derived analogues were evaluated for antimalarial, antimicrobial, and antineuroinflammatory activities. Several modified products exhibited potent and improved in vitro antineuroinflammatory, antimicrobial, and antimalarial activity. 1 showed improved activity against malaria compared to chloroquine in both multi- and single-dose in vivo experiments. The significant antimalarial potential was revealed by a 100% cure rate of malaria in mice with one administration of 100 mg/kg of 1. The potent antineuroinflammatory activity of the manzamines will provide great benefit for the prevention and treatment of cerebral infections (e.g., Cryptococcus and Plasmodium). In addition, 1 was shown to permeate across the blood-brain barrier (BBB) in an in vitro model using a MDR-MDCK monolayer. Docking studies support that 2 binds to the ATP-noncompetitive pocket of glycogen synthesis kinase-3beta (GSK-3beta), which is a putative target of manzamines. On the basis of the results presented here, it will be possible to initiate rational drug design efforts around this natural product scaffold for the treatment of several different diseases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND Axillary hyperhidrosis is a common and distressing problem interfering with the life of affected individuals. Currently, local surgery is the treatment of choice once conservative treatment has failed. OBJECTIVES To evaluate the clinical efficacy and safety of tumescent suction curettage (TSC) in treating axillary hyperhidrosis and to correlate it with histological markers. METHODS Thirty patients (17 females and 13 males, average age 29.9 years) underwent TSC. After tumescent anaesthesia, a suction cannula was inserted in the axilla on each side through two tiny incisions and subcutaneous tissue was removed by suction. We evaluated the clinical efficacy and complications, and in a subset of patients performed biopsies before surgery, as well as 1 month and 1 year after the operation. RESULTS In comparison with preoperative values, the sweat rate was diminished by 85% after 1 month, 71% after 6 months, 77% after 12 months and 61% after 24 months. The reduced efficacy with time was histologically correlated with an increase in the innervation, whereas the number of sweat glands continued to diminish. The majority of patients were satisfied with the operation but the satisfaction diminished with time. Patients with the highest preoperative sweat rates were the most satisfied after the intervention. CONCLUSION TSC is an effective and safe treatment for axillary hyperhidrosis. The long-term recurrence may be due to reinnervation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sphingosine 1-phosphate (S1P) is a potent mitogenic signal generated from sphingosine by the action of sphingosine kinases (SKs). In this study, we show that in the human arterial endothelial cell line EA.hy 926 histamine induces a time-dependent upregulation of the SK-1 mRNA and protein expression which is followed by increased SK-1 activity. A similar upregulation of SK-1 is also observed with the direct protein kinase C activator 12-O-tetradecanoylphorbol-13-acetate (TPA). In contrast, SK-2 activity is not affected by neither histamine nor TPA. The increased SK-1 protein expression is due to stimulated de novo synthesis since cycloheximide inhibited the delayed SK-1 protein upregulation. Moreover, the increased SK-1 mRNA expression results from an increased promoter activation by histamine and TPA. In mechanistic terms, the transcriptional upregulation of SK-1 is dependent on PKC and the extracellular signal-regulated protein kinase (ERK) cascade since staurosporine and the MEK inhibitor U0126 abolish the TPA-induced SK-1 induction. Furthermore, the histamine effect is abolished by the H1-receptor antagonist diphenhydramine, but not by the H2-receptor antagonist cimetidine. Parallel to the induction of SK-1, histamine and TPA stimulate an increased migration of endothelial cells, which is prevented by depletion of the SK-1 by small interfering RNA (siRNA). To appoint this specific cell response to a specific PKC isoenzyme, siRNA of PKC-alpha, -delta, and -epsilon were used to selectively downregulate the respective isoforms. Interestingly, only depletion of PKC-alpha leads to a complete loss of TPA- and histamine-triggered SK-1 induction and cell migration. In summary, these data show that PKC-alpha activation in endothelial cells by histamine-activated H1-receptors, or by direct PKC activators leads to a sustained upregulation of the SK-1 protein expression and activity which, in turn, is critically involved in the mechanism of endothelial cell migration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: FTY720 is a potent immunomodulatory prodrug that is converted to its active phosphorylated form by a sphingosine kinase. Here we have studied whether FTY720 mimicked the action of sphingosine-1-phosphate (S1P) and exerted an anti-inflammatory potential in renal mesangial cells. EXPERIMENTAL APPROACH: Prostaglandin E(2) (PGE(2)) was quantified by an enzyme-linked immunosorbent-assay. Secretory phospholipase A(2) (sPLA(2)) protein was detected by Western blot analyses. mRNA expression was determined by Northern blot analysis and sPLA(2)-promoter activity was measured by a luciferase-reporter-gene assay. KEY RESULTS: Stimulation of cells for 24 h with interleukin-1beta (IL-1beta) is known to trigger increased PGE(2) formation which coincides with an induction of the mRNA for group-IIA-sPLA(2) and protein expression. FTY720 dose-dependently suppressed IL-1beta-induced IIA-sPLA(2) protein secretion and activity in the supernatant. This effect is due to a suppression of cytokine-induced sPLA(2) mRNA expression which results from a reduced promoter activity. As a consequence of suppressed sPLA(2) activity, PGE(2) formation is also reduced by FTY720. Mechanistically, the FTY720-suppressed sPLA(2) expression results from an activation of the TGFbeta/Smad signalling cascade since inhibition of the TGFbeta receptor type I by a specific kinase inhibitor reverses the FTY720-mediated decrease of sPLA(2) protein expression and sPLA(2) promoter activity. CONCLUSIONS AND IMPLICATIONS: In summary, our data show that FTY720 was able to mimic the anti-inflammatory activity of TGFbeta and blocked cytokine-triggered sPLA(2) expression and subsequent PGE(2) formation. Thus, FTY720 may exert additional in vivo effects besides the well reported immunomodulation and its anti-inflammatory potential should be considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new class of bisphosphonates containing nitrooxy NO-donor functions has been developed. The products proved to display affinity for hydroxyapatite. Injection of (99m)Tc-labeled derivatives 11 and 18 into male rats showed a preferential accumulation of the compounds in bone as compared to blood and muscles. The products were found to inhibit the differentiation of pre-osteoclasts to functional osteoclasts induced by receptor activator of NF-kappaB ligand (RANKL), through a prevalent NO-dependent mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The haem detoxification pathway of the malaria parasite Plasmodium falciparum is a potential biochemical target for drug development. Free haem, released after haemoglobin degradation, is polymerized by the parasite to form haemozoin pigment. Plasmodium falciparum histidine-rich protein-2 (Pfhrp-2) has been implicated as the catalytic scaffold for detoxification of haem in the malaria parasite. Previously we have shown that a hexapeptide repeat sequence (Ala-His-His-Ala-Ala-Asp), which appears 33 times in Pfhrp-2, may be the major haem binding site in this protein. The haem binding studies carried out by ourselves indicate that up to 18 equivalents of haem could be bound by this protein with an observed K(d) of 0.94 microM. Absorbance spectroscopy provides evidence that chloroquine is capable of extracting haem bound to Pfhrp-2. This was supported by the K(d) value, of 37 nM, observed for the haem-chloroquine complex. The native PAGE studies reveal that the formation of the haem-Pfhrp-2 complex is disrupted by chloroquine. These results indicate that chloroquine may be acting by inhibiting haem detoxification/binding to Pfhrp-2. Moreover, the higher affinity of chloroquine for haem than Pfhrp-2 suggests a possible mechanism of action for chloroquine; it may remove the haem bound to Pfhrp-2 and form a complex that is toxic to the parasite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Population coding is widely regarded as a key mechanism for achieving reliable behavioral decisions. We previously introduced reinforcement learning for population-based decision making by spiking neurons. Here we generalize population reinforcement learning to spike-based plasticity rules that take account of the postsynaptic neural code. We consider spike/no-spike, spike count and spike latency codes. The multi-valued and continuous-valued features in the postsynaptic code allow for a generalization of binary decision making to multi-valued decision making and continuous-valued action selection. We show that code-specific learning rules speed up learning both for the discrete classification and the continuous regression tasks. The suggested learning rules also speed up with increasing population size as opposed to standard reinforcement learning rules. Continuous action selection is further shown to explain realistic learning speeds in the Morris water maze. Finally, we introduce the concept of action perturbation as opposed to the classical weight- or node-perturbation as an exploration mechanism underlying reinforcement learning. Exploration in the action space greatly increases the speed of learning as compared to exploration in the neuron or weight space.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

T cell receptors (TCR) containing Vβ20-1 have been implicated in a wide range of T cell mediated disease and allergic reactions, making it a target for understanding these. Mechanics of T cell receptors are largely unexplained by static structures available from x-ray crystallographic studies. A small number of molecular dynamic simulations have been conducted on TCR, however are currently lacking either portions of the receptor or explanations for differences between binding and non-binding TCR recognition of respective peptide-HLA. We performed molecular dynamic simulations of a TCR containing variable domain Vβ20-1, sequenced from drug responsive T cells. These were initially from a patient showing maculopapular eruptions in response to the sulfanilamide-antibiotic sulfamethoxazole (SMX). The CDR2β domain of this TCR was found to dock SMX with high affinity. Using this compound as a perturbation, overall mechanisms involved in responses mediated by this receptor were explored, showing a chemical action on the TCR free from HLA or peptide interaction. Our simulations show two completely separate modes of binding cognate peptide-HLA complexes, with an increased affinity induced by SMX bound to the Vβ20-1. Overall binding of the TCR is mediated through a primary recognition by either the variable β or α domain, and a switch in recognition within these across TCR loops contacting the peptide and HLA occurs when SMX is present in the CDR2β loop. Large binding affinity differences are induced by summed small amino acid changes primarily by SMX modifying only three critical CDR2β loop amino acid positions. These residues, TYRβ57, ASPβ64, and LYSβ65 initially hold hydrogen bonds from the CDR2β to adjacent CDR loops. Effects from SMX binding are amplified and traverse longer distances through internal TCR hydrogen bonding networks, controlling the overall TCR conformation. Thus, the CDR2β of Vβ20-1 acts as a ligand controlled switch affecting overall TCR binding affinity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Elucidating the mechanism of action of trypanocidal compounds is an important step in the development of more efficient drugs against Trypanosoma brucei. In a screening approach using an RNAi library in T. brucei bloodstream forms, we identified a member of the mitochondrial carrier family, TbMCP14, as a prime candidate mediating the action of a group of anti-parasitic choline analogs. Depletion of TbMCP14 by inducible RNAi in both bloodstream and procyclic forms increased resistance of parasites towards the compounds by 7-fold and 3-fold, respectively, compared to uninduced cells. In addition, down-regulation of TbMCP14 protected bloodstream form mitochondria from a drug-induced decrease in mitochondrial membrane potential. Conversely, over-expression of the carrier in procyclic forms increased parasite susceptibility more than 13-fold. Metabolomic analyses of parasites over-expressing TbMCP14 showed increased levels of the proline metabolite, pyrroline-5-carboxylate, suggesting a possible involvement of TbMCP14 in energy production. The generation of TbMCP14 knock-out parasites showed that the carrier is not essential for survival of T. brucei bloodstream forms, but reduced parasite proliferation under standard culture conditions. In contrast, depletion of TbMCP14 in procyclic forms resulted in growth arrest, followed by parasite death. The time point at which parasite proliferation stopped was dependent on the major energy source, i.e. glucose versus proline, in the culture medium. Together with our findings that proline-dependent ATP production in crude mitochondria from TbMCP14-depleted trypanosomes was reduced compared to control mitochondria, the study demonstrates that TbMCP14 is involved in energy production in T. brucei. Since TbMCP14 belongs to a trypanosomatid-specific clade of mitochondrial carrier family proteins showing very poor similarity to mitochondrial carriers of mammals, it may represent an interesting target for drug action or targeting.