9 resultados para Actinomyces Viscosus
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Actinomyces europaeus was first described in 1997 as a new species causing predominantly skin and soft-tissue infections. Mastitis due to A. europaeus is an unusual condition. This article reports a case of primary breast abscess caused by A. europaeus in a postmenopausal woman.
Resumo:
INTRODUCTION: Fixed orthodontic appliances can alter the subgingival microbiota. Our aim was to compare the subgingival microbiota and clinical parameters in adolescent subjects at sites of teeth treated with orthodontic bands with margins at (OBM) or below the gingival margin (OBSM), or with brackets (OBR). METHODS: Microbial samples were collected from 33 subjects (ages, 12-18 years) in treatment more than 6 months. The microbiota was assessed by the DNA-DNA checkerboard hybridization method. RESULTS: Bacterial samples were taken from 83 OBR,103 OBSM, and 54 OBM sites. Probing pocket depths differed by orthodontic type (P <0.001) with mean values of 2.9 mm (SD, 0.6) at OBSM sites, 2.5 mm (SD, 0.6) at OBM sites, and 2.3 mm (SD, 0.5) at OBR sites. Only Actinomyces israelii (P <0.001) and Actinomyces naeslundii (P <0.001) had higher levels at OBR sites, whereas Neisseria mucosa had higher levels at sites treated with OBSM or OBM (P <0.001). Aggregatibacter actinomycetemcomitans was found in 25% of sites independent of the appliance. CONCLUSIONS: Different types of orthodontic appliances cause minor differences in the subgingival microbiota (A israelii and A naeslundii) and higher levels at sites treated with orthodontic brackets. More sites with bleeding on probing and deeper pockets were found around orthodontic bands.
Resumo:
OBJECTIVES: To assess the microbiological outcome of local administration of minocycline hydrochloride microspheres 1 mg (Arestin) in cases with peri-implantitis and with a follow-up period of 12 months. MATERIAL AND METHODS: After debridement, and local administration of chlorhexidine gel, peri-implantitis cases were treated with local administration of minocycline microspheres (Arestin). The DNA-DNA checkerboard hybridization method was used to detect bacterial presence during the first 360 days of therapy. RESULTS: At Day 10, lower bacterial loads for 6/40 individual bacteria including Actinomyces gerensceriae (P<0.1), Actinomyces israelii (P<0.01), Actinomyces naeslundi type 1 (P<0.01) and type 2 (P<0.03), Actinomyces odontolyticus (P<0.01), Porphyromonas gingivalis (P<0.01) and Treponema socranskii (P<0.01) were found. At Day 360 only the levels of Actinobacillus actinomycetemcomitans were lower than at baseline (mean difference: 1x10(5); SE difference: 0.34x10(5), 95% CI: 0.2x10(5) to 1.2x10(5); P<0.03). Six implants were lost between Days 90 and 270. The microbiota was successfully controlled in 48%, and with definitive failures (implant loss and major increase in bacterial levels) in 32% of subjects. CONCLUSIONS: At study endpoint, the impact of Arestin on A. actinomycetemcomitans was greater than the impact on other pathogens. Up to Day 180 reductions in levels of Tannerella forsythia, P. gingivalis, and Treponema denticola were also found. Failures in treatment could not be associated with the presence of specific pathogens or by the total bacterial load at baseline. Statistical power analysis suggested that a case control study would require approximately 200 subjects.
Resumo:
Background: The goal of this study was to determine whether site-specific differences in the subgingival microbiota could be detected by the checkerboard method in subjects with periodontitis. Methods: Subjects with at least six periodontal pockets with a probing depth (PD) between 5 and 7 mm were enrolled in the study. Subgingival plaque samples were collected with sterile curets by a single-stroke procedure at six selected periodontal sites from 161 subjects (966 subgingival sites). Subgingival bacterial samples were assayed with the checkerboard DNA-DNA hybridization method identifying 37 species. Results: Probing depths of 5, 6, and 7 mm were found at 50% (n = 483), 34% (n = 328), and 16% (n = 155) of sites, respectively. Statistical analysis failed to demonstrate differences in the sum of bacterial counts by tooth type (P = 0.18) or specific location of the sample (P = 0.78). With the exceptions of Campylobacter gracilis (P <0.001) and Actinomyces naeslundii (P <0.001), analysis by general linear model multivariate regression failed to identify subject or sample location factors as explanatory to microbiologic results. A trend of difference in bacterial load by tooth type was found for Prevotella nigrescens (P <0.01). At a cutoff level of >/=1.0 x 10(5), Porphyromonas gingivalis and Tannerella forsythia (previously T. forsythensis) were present at 48.0% to 56.3% and 46.0% to 51.2% of sampled sites, respectively. Conclusions: Given the similarities in the clinical evidence of periodontitis, the presence and levels of 37 species commonly studied in periodontitis are similar, with no differences between molar, premolar, and incisor/cuspid subgingival sites. This may facilitate microbiologic sampling strategies in subjects during periodontal therapy.
Resumo:
AIMS: To assess the impact of different implant systems on the clinical conditions and the microbiota at implants, and whether the presence of bacteria at tooth sites was predictive of the presence at implant sites. MATERIALS AND METHODS: Subjects with either AstraTech or Brånemark in function for 7 years were enrolled. Sub-gingival bacterial samples at tooth and implant sites were collected with sterile endodontic paper points, and analyzed by the checkerboard DNA-DNA hybridization method (40 species). RESULTS: Fifty-four subjects, 27 supplied with AstraTech (n=132 implants) and 27 with Brånemark (n=102) implants, were studied. Test tooth sites had significantly less evidence of bleeding on probing (P<0.001) and presence of plaque (P<0.001) than implant test sites. Implant sites presented with deeper probing pocket depth than tooth sites (mean difference: 1.1 mm, standard error of differences: 0.08, 95% confidence intervals (CI): 0.9-1.3, P<0.001). Tannerella forsythia (P<0.05), Capnocytophaga sputigena (P<0.05), Actinomyces israelii (P<0.05) and Lactobacillus acidophilus (P<0.05) were found at higher levels at tooth surfaces. No differences in bacterial load for any species were found between the two implant systems. The odds of being present/absent at tooth and implants sites were only significant for Staphylococcus aureus [odds ratio (OR): 5.2 : 1, 95% CI: 1.4-18.9, P<0.01]. CONCLUSIONS: After 7 years in function, implants presented with deeper probing depths than teeth. S. aureus was commonly present at both teeth and implants sites. S. aureus at tooth sites was predictive of also being present at implant sites.
Resumo:
BACKGROUND: Information on the subgingival microbiota in parous women is limited. The present study assessed 74 bacterial species at periodontal sites. METHODS: Subgingival bacterial plaque was collected from women > or =6 months after delivery. Bacteria were assessed by the checkerboard DNA-DNA hybridization method. Gingivitis was defined as > or =20% of sites with bleeding on probing (BOP), and periodontitis was defined as radiographic evidence of bone loss and probing depths > or =5.0 mm. RESULTS: A total of 197 women (mean age: 29.4 +/- 6.8 years; range: 18 to 46 years) were included in the study. Gingivitis was identified in 82 of 138 subjects without evidence of periodontitis (59.4%). Periodontitis was found in 59 women (32%). Higher bacterial levels in subjects with gingivitis compared to those without evidence of gingivitis were observed for Actinomyces neuii, Bifidobacterium bifidum, Corynebacterium pseudogenitalis, Porphyromonas endodontalis, Prevotella bivia, and Pseudomonas aeruginosa (P <0.001 for each). Higher bacterial levels in subjects with periodontitis compared to those without periodontitis (BOP not accounted for) were found for 32 of 79 species (P <0.001) including Lactobacillus iners, Haemophilus influenzae, Porphyromonas gingivalis, Tannerella forsythia (previously T. forsythensis), Prevotella bivia, P. aeruginosa, and Staphylococcus aureus. Binary univariate logistic regression analysis identified that P. aeruginosa (P <0.001) and T. forsythia (P <0.05) were independently predictive of periodontal status. The odds ratio of having P. aeruginosa at levels > or =1 x 10(5) in the sample and periodontitis was 3.1 (95% confidence interval: 1.6 to 5.9; P <0.001). CONCLUSION: In addition to P. gingivalis and T. forsythia, a diverse microbiota, including P. aeruginosa, P. endodontalis, P. bivia, and S. aureus, can be found in subgingival plaque samples from women of child-bearing age with periodontitis.
Resumo:
Aim: We aimed to assess caries experience and microbiota in systemically healthy children with black stain (BS) and non-discoloured plaque. Methods: Forty-six children with BS and 47 counterparts with non-discoloured plaque aged 7.9 ± 1.3 years were clinically examined. Dental caries was scored using WHO criteria. Samples of BS and non-discoloured dental plaque were collected from tooth surfaces. The DNA of the samples was extracted and real-time PCR was performed to determine the total number of bacteria and the species Streptococcus mutans, S. sobrinus, Lactobacillus sp., Actinomyces naeslundii, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia and Fusobacterium nucleatum. Results: Children with BS had lower DMFT (p = 0.013), lower DT values (p = 0.005) and a tendency to lower caries prevalence (p = 0.061) than children with non-discoloured plaque. Plaque samples of the BS group contained higher numbers of A. naeslundii (p = 0.005) and lower numbers of F. nucleatum (p = 0.001) and Lactobacillus sp. (p = 0.001) compared to the non-discoloured plaque samples of the control group. Comparing the children with BS and non-discoloured plaque, higher counts for A. naeslundii (p = 0.013) were observed in caries-free children with BS while in caries-affected children with BS, lower counts of F. nucleatum (p = 0.007) were found. Counts of Lactobacillus sp. were higher in non-discoloured plaque samples than in BS of caries-free and caries-affected children. Conclusion: Results suggest that the different microbial composition of BS might be associated with the lower caries experience in affected subjects. The role of black-pigmented bacteria associated with periodontitis needs further studies. © 2013 S. Karger AG, Basel.
Resumo:
New preventive approaches against dental erosion caused by acidic drinks and beverages include fortification of beverages with natural polymers. We have shown that the mixture of casein and mucin significantly improved the erosion-inhibiting properties of the human pellicle layer. This study aimed to investigate the effect of pellicle modification by casein, mucin and a casein-mucin mixture on the adhesion of early bacterial colonizers. Test specimens of human tooth enamel were prepared, covered with saliva and coated with 0.5% aqueous (aq.) casein, 0.27% aq. mucin or with 0.5% aq. casein-0.27% aq. mucin, after which the adhesion of Streptococcus gordonii, Streptococcus oralis, and Actinomyces odontolyticus was measured after incubation for 30 min and 2 h. log10 colony-forming units were compared by nonparametric tests. All three bacterial strains adhered in higher number to pellicle-coated enamel than to native enamel. The protein modifications of pellicle all decreased the counts of adhering bacteria up to 0.34 log10/mm2, the most efficient being the casein-mucin mixture. In addition to the recently shown erosion-reducing effect by casein-mucin, modification of the pellicle may inhibit bacterial adherence compared to untreated human pellicle.