14 resultados para Achilles

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glutathione-S-transferase of the Pi class (GSTP1) is frequently overexpressed in a variety of solid tumors and has been identified as a potential therapeutic target for cancer therapy. GSTP1 is a phase II detoxification enzyme and conjugates the tripeptide glutathione to endogenous metabolites and xenobiotics, thereby limiting the efficacy of antitumor chemotherapeutic treatments. In addition, GSTP1 regulates cellular stress responses and apoptosis by sequestering and inactivating c-Jun N-terminal kinase (JNK). Thiazolides are a novel class of antibiotics for the treatment of intestinal pathogens with no apparent side effects on the host cells and tissue. Here we show that thiazolides induce a GSTP1-dependent and glutathione-enhanced cell death in colorectal tumor cell lines. Downregulation of GSTP1 reduced the apoptotic activity of thiazolides, whereas overexpression enhanced it. Thiazolide treatment caused strong Jun kinase activation and Jun kinase-dependent apoptosis. As a critical downstream target of Jun kinase we identified the pro-apoptotic Bcl-2 homolog Bim. Thiazolides induced Bim expression and activation in a JNK-dependent manner. Downregulation of Bim in turn significantly blocked thiazolide-induced apoptosis. Whereas low concentrations of thiazolides failed to induce apoptosis directly, they potently sensitized colon cancer cells to TNF-related apoptosis-inducing ligand- and chemotherapeutic drug-induced cell death. Although GSTP1 overexpression generally limits chemotherapy and thus antitumor treatment, our study identifies GSTP1 as Achilles' heel and thiazolides as novel interesting apoptosis sensitizer for the treatment of colorectal tumors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study investigated the efficacy and safety of a balloon expandable, sirolimus-eluting stent (SES) in patients with symptomatic infrapopliteal arterial disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To compare the prediction of hip fracture risk of several bone ultrasounds (QUS), 7062 Swiss women > or =70 years of age were measured with three QUSs (two of the heel, one of the phalanges). Heel QUSs were both predictive of hip fracture risk, whereas the phalanges QUS was not. INTRODUCTION: As the number of hip fracture is expected to increase during these next decades, it is important to develop strategies to detect subjects at risk. Quantitative bone ultrasound (QUS), an ionizing radiation-free method, which is transportable, could be interesting for this purpose. MATERIALS AND METHODS: The Swiss Evaluation of the Methods of Measurement of Osteoporotic Fracture Risk (SEMOF) study is a multicenter cohort study, which compared three QUSs for the assessment of hip fracture risk in a sample of 7609 elderly ambulatory women > or =70 years of age. Two QUSs measured the heel (Achilles+; GE-Lunar and Sahara; Hologic), and one measured the heel (DBM Sonic 1200; IGEA). The Cox proportional hazards regression was used to estimate the hazard of the first hip fracture, adjusted for age, BMI, and center, and the area under the ROC curves were calculated to compare the devices and their parameters. RESULTS: From the 7609 women who were included in the study, 7062 women 75.2 +/- 3.1 (SD) years of age were prospectively followed for 2.9 +/- 0.8 years. Eighty women reported a hip fracture. A decrease by 1 SD of the QUS variables corresponded to an increase of the hip fracture risk from 2.3 (95% CI, 1.7, 3.1) to 2.6 (95% CI, 1.9, 3.4) for the three variables of Achilles+ and from 2.2 (95% CI, 1.7, 3.0) to 2.4 (95% CI, 1.8, 3.2) for the three variables of Sahara. Risk gradients did not differ significantly among the variables of the two heel QUS devices. On the other hand, the phalanges QUS (DBM Sonic 1200) was not predictive of hip fracture risk, with an adjusted hazard risk of 1.2 (95% CI, 0.9, 1.5), even after reanalysis of the digitalized data and using different cut-off levels (1700 or 1570 m/s). CONCLUSIONS: In this elderly women population, heel QUS devices were both predictive of hip fracture risk, whereas the phalanges QUS device was not.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The process of epidermal renewal persists throughout the entire life of an organism. It begins when a keratinocyte progenitor leaves the stem cell compartment, undergoes a limited number of mitotic divisions, exits the cell cycle, and commits to terminal differentiation. At the end of this phase, the postmitotic keratinocytes detach from the basement membrane to build up the overlaying stratified epithelium. Although highly coordinated, this sequence of events is endowed with a remarkable versatility, which enables the quiescent keratinocyte to reintegrate into the cell cycle and become migratory when necessary, for example after wounding. It is this versatility that represents the Achilles heel of epithelial cells allowing for the development of severe pathologies. Over the past decade, compelling evidence has been provided that epithelial cancer cells achieve uncontrolled proliferation following hijacking of a "survival program" with PI3K/Akt and a "proliferation program" with growth factor receptor signaling at its core. Recent insights into adhesion receptor signaling now propose that integrins, but also cadherins, can centrally control these programs. It is suggested that the two types of adhesion receptors act as sensors to transmit extracellular stimuli in an outside-in mode, to inversely modulate epidermal growth factor receptor signaling and ensure cell survival. Hence, cell-matrix and cell-cell adhesion receptors likely play a more powerful and wide-ranging role than initially anticipated. This Perspective article discusses the relevance of this emerging field for epidermal growth and differentiation, which can be of importance for severe pathologies such as tumorigenesis and invasive metastasis, as well as psoriasis and Pemphigus vulgaris.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The inevitable detachment of tendons and the loss of the forefoot in Chopart and Lisfranc amputations result in equinus and varus of the residual foot. In an insensate foot these deformities can lead to keratotic lesions and ulcerations. The currently available prostheses cannot safely counteract the deforming forces and the resulting complications. METHODS: A new below-knee prosthesis was developed, combining a soft socket with a rigid shaft. The mold is taken with the foot in the corrected position. After manufacturing the shaft, the lateral third of the circumference of the shaft is cut away and reattached distally with a hinge, creating a lateral flap. By closing this flap the hindfoot is gently levered from the varus position into valgus. Ten patients (seven amputations at the Chopart-level, three amputations at the Lisfranc-level) with insensate feet were fitted with this prosthesis at an average of 3 (range 1.5 to 9) months after amputation. The handling, comfort, time of daily use, mobility, correction of malposition and complications were recorded to the latest followup (average 31 months, range 24 to 37 months after amputation). RESULTS: Eight patients evaluated the handling as easy, two as difficult. No patient felt discomfort in the prosthesis. The average time of daily use was 12 hours, and all patients were able to walk. All varus deformities were corrected in the prosthesis. Sagittal alignment was kept neutral. Complications were two minor skin lesions and one small ulcer, all of which responded to conservative treatment, and one ulcer healed after debridement and lengthening of the Achilles tendon. CONCLUSIONS: The "flap-shaft" prosthesis is a valuable option for primary or secondary prosthetic fitting of Chopart-level and Lisfranc-level amputees with insensate feet and flexible equinus and varus deformity at risk for recurrent ulceration. It provided safe and sufficient correction of malpositions and enabled the patients to walk as much as their general condition permitted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Because of the important morbidity and mortality associated with osteoporosis, it is essential to detect subjects at risk by screening methods, such as bone quantitative ultrasounds (QUSs). Several studies showed that QUS could predict fractures. None, however, compared prospectively different QUS devices, and few data of quality controls (QCs) have been published. The Swiss Evaluation of the Methods of Measurement of Osteoporotic Fracture Risk is a prospective multicenter study that compared three QUSs for the assessment of hip fracture risk in a population of 7609 women age >/=70 yr. Because the inclusion phase lasted 20 mo, and because 10 centers participated in this study, QC became a major issue. We therefore developed a QC procedure to assess the stability and precision of the devices, and for their cross-calibration. Our study focuses on the two heel QUSs. The water bath system (Achilles+) had a higher precision than the dry system (Sahara). The QC results were highly dependent on temperature. QUS stability was acceptable, but Sahara must be calibrated regularly. A sufficient homogeneity among all the Sahara devices could be demonstrated, whereas significant differences were found among the Achilles+ devices. For speed of sound, 52% of the differences among the Achilles+ was explained by the water s temperature. However, for broadband ultrasound attenuation, a maximal difference of 23% persisted after adjustment for temperature. Because such differences could influence measurements in vivo, it is crucial to develop standardized phantoms to be used in prospective multicenter studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND In Chopart-level amputations the heel often deviates into equinus and varus when, due to the lack of healthy anterior soft tissue, rebalancing tendon transfers to the talar head are not possible. Consequently, anterior and lateral wound dehiscence and ulceration may occur requiring higher-level amputation to achieve wound closure, with considerable loss of function for the patients. METHODS Twenty-four consecutive patients (15 diabetes, 6 trauma, and 3 tumor) had Chopart's amputation and simultaneous or delayed additional ankle dorsiflexion arthrodesis to allow for tension-free wound closure or soft tissue reconstruction, or to treat secondary recurrent ulcerations. Percutaneous Achilles tendon lengthening and subtalar arthrodesis were added as needed. Wound healing problems, time to fusion and full weight-bearing in the prosthesis, complications in the prosthesis, and the ambulatory status were assessed. Satisfaction and function were evaluated by the AmpuPro score and the validated Prosthesis Evaluation Questionnaire scale. RESULTS Five patients had successful soft tissue healing and fusions but died of their underlying disease 2 to 46 months after the operation. Two diabetic patients required a transtibial amputation. The other 17 patients were followed for 27 months (range, 13-63). The average age of the 4 women and 13 men was 53.9 years (range, 16-87). Postoperative complications included minor wound healing problems in 8 patients, wound breakdown requiring revision in 4, phantom pain in 3, residual equinus in 1, and adjacent scar carcinoma in 1 patient. The time to full weight-bearing in the prosthesis ranged from 6 to 24 weeks (mean 10). The mean AmpuPro score was 107 points (of 120), and the mean Prosthesis Evaluation Questionnaire scale was 147 points (of 200). No complications occurred with the prosthesis. Twelve patients lost 1 to 2 mobility classes (mean 0.9). The arthrodeses all healed within 2.5 months (range, 1.5 to 5 months). CONCLUSION Adding an ankle arthrodesis to a Chopart's amputation either immediately or in a delayed fashion to treat anterior soft tissue complications was a successful salvage in most patients at this amputation level. It enabled the patients to preserve the advantages of a full-length limb with terminal weight-bearing. LEVEL OF EVIDENCE Level IV, retrospective case series.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ischaemic spinal cord injury (SCI) remains the Achilles heel of open and endovascular descending thoracic and thoracoabdominal repair. Neurological outcomes have improved coincidentially with the introduction of neuroprotective measures. However, SCI (paraplegia and paraparesis) remains the most devastating complication. The aim of this position paper is to provide physicians with broad information regarding spinal cord blood supply, to share strategies for shortening intraprocedural spinal cord ischaemia and to increase spinal cord tolerance to transitory ischaemia through detection of ischaemia and augmentation of spinal cord blood perfusion. This study is meant to support physicians caring for patients in need of any kind of thoracic or thoracoabdominal aortic repair in decision-making algorithms in order to understand, prevent or reverse ischaemic SCI. Information has been extracted from focused publications available in the PubMed database, which are cohort studies, experimental research reports, case reports, reviews, short series and meta-analyses. Individual chapters of this position paper were assigned and after delivery harmonized by Christian D. Etz, Ernst Weigang and Martin Czerny. Consequently, further writing assignments were distributed within the group and delivered in August 2014. The final version was submitted to the EJCTS for review in September 2014.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cardiac pacemakers are routinely used for the treatment of bradyarrhythmias. Contemporary pacemakers are reliable and allow for a patient specific programming. However, pacemaker replacements due to battery depletion are common (~25 % of all implantation procedures) and bear the risk of complications. Batteryless pacemakers may allow overcoming this limitation. To power a batteryless pacemaker, a mechanism for intracorporeal energy harvesting is required. Such a generator may consist out of subcutaneously implanted solar cells, transforming the small amount of transcutaneously available light into electrical energy. Alternatively, intravascular turbines may harvest energy from the blood flow. Energy may also be harvested from the ventricular wall motion by a dedicated mechanical clockwork converting motion into electrical energy. All these approaches have successfully been tested in vivo. Pacemaker leads constitute another Achilles heel of contemporary pacemakers. Thus, leadless devices are desired. Miniaturized pacemaker circuits and suitable energy harvesting mechanisms (incorporated in a single device) may allow catheter-based implantation of the pacemaker in the heart. Such miniaturized battery- and leadless pacemakers would combine the advantages of both approaches and overcome major limitations of today’s systems.