4 resultados para Accounting data
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
This paper contrasts the decision-usefulness of prototype accounting regimes based on perfect accounting for value, i.e. ideal value accounting (IVA), and perfect matching of cost, i.e. ideal cost accounting (ICA). The regimes are analyzed in the context of a firm with overlapping capacity investments where projects earn excess returns and residual income is utilized as performance indicator. Provided that IVA and ICA systematically differ based on the criterion of unconditional conservatism, we assess their respective decision-usefulness for different valuation- and stewardship-scenarios. Assuming that addressees solely observe current accounting data of the firm, ICA provides information which is useful for valuation and stewardship without reservation whereas IVA entails problems under specific assumptions.
Does published orthodontic research account for clustering effects during statistical data analysis?
Resumo:
In orthodontics, multiple site observations within patients or multiple observations collected at consecutive time points are often encountered. Clustered designs require larger sample sizes compared to individual randomized trials and special statistical analyses that account for the fact that observations within clusters are correlated. It is the purpose of this study to assess to what degree clustering effects are considered during design and data analysis in the three major orthodontic journals. The contents of the most recent 24 issues of the American Journal of Orthodontics and Dentofacial Orthopedics (AJODO), Angle Orthodontist (AO), and European Journal of Orthodontics (EJO) from December 2010 backwards were hand searched. Articles with clustering effects and whether the authors accounted for clustering effects were identified. Additionally, information was collected on: involvement of a statistician, single or multicenter study, number of authors in the publication, geographical area, and statistical significance. From the 1584 articles, after exclusions, 1062 were assessed for clustering effects from which 250 (23.5 per cent) were considered to have clustering effects in the design (kappa = 0.92, 95 per cent CI: 0.67-0.99 for inter rater agreement). From the studies with clustering effects only, 63 (25.20 per cent) had indicated accounting for clustering effects. There was evidence that the studies published in the AO have higher odds of accounting for clustering effects [AO versus AJODO: odds ratio (OR) = 2.17, 95 per cent confidence interval (CI): 1.06-4.43, P = 0.03; EJO versus AJODO: OR = 1.90, 95 per cent CI: 0.84-4.24, non-significant; and EJO versus AO: OR = 1.15, 95 per cent CI: 0.57-2.33, non-significant). The results of this study indicate that only about a quarter of the studies with clustering effects account for this in statistical data analysis.
Resumo:
If change over time is compared in several groups, it is important to take into account baseline values so that the comparison is carried out under the same preconditions. As the observed baseline measurements are distorted by measurement error, it may not be sufficient to include them as covariate. By fitting a longitudinal mixed-effects model to all data including the baseline observations and subsequently calculating the expected change conditional on the underlying baseline value, a solution to this problem has been provided recently so that groups with the same baseline characteristics can be compared. In this article, we present an extended approach where a broader set of models can be used. Specifically, it is possible to include any desired set of interactions between the time variable and the other covariates, and also, time-dependent covariates can be included. Additionally, we extend the method to adjust for baseline measurement error of other time-varying covariates. We apply the methodology to data from the Swiss HIV Cohort Study to address the question if a joint infection with HIV-1 and hepatitis C virus leads to a slower increase of CD4 lymphocyte counts over time after the start of antiretroviral therapy.
Resumo:
Radiocarbon production, solar activity, total solar irradiance (TSI) and solar-induced climate change are reconstructed for the Holocene (10 to 0 kyr BP), and TSI is predicted for the next centuries. The IntCal09/SHCal04 radiocarbon and ice core CO2 records, reconstructions of the geomagnetic dipole, and instrumental data of solar activity are applied in the Bern3D-LPJ, a fully featured Earth system model of intermediate complexity including a 3-D dynamic ocean, ocean sediments, and a dynamic vegetation model, and in formulations linking radiocarbon production, the solar modulation potential, and TSI. Uncertainties are assessed using Monte Carlo simulations and bounding scenarios. Transient climate simulations span the past 21 thousand years, thereby considering the time lags and uncertainties associated with the last glacial termination. Our carbon-cycle-based modern estimate of radiocarbon production of 1.7 atoms cm−2 s−1 is lower than previously reported for the cosmogenic nuclide production model by Masarik and Beer (2009) and is more in-line with Kovaltsov et al. (2012). In contrast to earlier studies, periods of high solar activity were quite common not only in recent millennia, but throughout the Holocene. Notable deviations compared to earlier reconstructions are also found on decadal to centennial timescales. We show that earlier Holocene reconstructions, not accounting for the interhemispheric gradients in radiocarbon, are biased low. Solar activity is during 28% of the time higher than the modern average (650 MeV), but the absolute values remain weakly constrained due to uncertainties in the normalisation of the solar modulation to instrumental data. A recently published solar activity–TSI relationship yields small changes in Holocene TSI of the order of 1 W m−2 with a Maunder Minimum irradiance reduction of 0.85 ± 0.16 W m−2. Related solar-induced variations in global mean surface air temperature are simulated to be within 0.1 K. Autoregressive modelling suggests a declining trend of solar activity in the 21st century towards average Holocene conditions.