20 resultados para ASK-CTL
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Self-efficacy has been identified as one of the most consistent variables that predict the outcome of alcohol treatment. However, many previous studies in this field failed to control for other important predictors (e.g., dependences severity, psychiatric symptoms, and treatment goal). Our study's first goal was to evaluate the predictive value of self-efficacy when most other relevant variables were statistically controlled. The second goal was to compare the predictive values of self-efficacy assessed with the Situational Confidence Questionnaire (SCQ), and general self-efficacy assessed with a single question.
Resumo:
Hepatitis C virus (HCV) vaccine efficacy may crucially depend on immunogen length and coverage of viral sequence diversity. However, covering a considerable proportion of the circulating viral sequence variants would likely require long immunogens, which for the conserved portions of the viral genome, would contain unnecessarily redundant sequence information. In this study, we present the design and in vitro performance analysis of a novel "epitome" approach that compresses frequent immune targets of the cellular immune response against HCV into a shorter immunogen sequence. Compression of immunological information is achieved by partial overlapping shared sequence motifs between individual epitopes. At the same time, sequence diversity coverage is provided by taking advantage of emerging cross-reactivity patterns among epitope variants so that epitope variants associated with the broadest variant cross-recognition are preferentially included. The processing and presentation analysis of specific epitopes included in such a compressed, in vitro-expressed HCV epitome indicated effective processing of a majority of tested epitopes, although re-presentation of some epitopes may require refined sequence design. Together, the present study establishes the epitome approach as a potential powerful tool for vaccine immunogen design, especially suitable for the induction of cellular immune responses against highly variable pathogens.
Resumo:
CTL are induced by two pathways, i.e. direct priming, where tumor cells present tumor antigens to naïve specific CTL, and cross-priming, where professional APC cross-present captured tumor antigens to CTL. Here, we examined direct priming versus cross-priming after immunizing (H-2(b) x H-2(d)) F1 mice with either H-2(b) or H-2(d) positive tumor cells transfected with the GP or nucleoprotein (NP) of lymphocytic choriomeningitis virus (LCMV). Cross-priming was observed for the immunodominant epitopes LCMV-gp33 and -np118, although direct induction resulted in higher CTL frequencies. In contrast, CTL specific for the subdominant epitopes LCMV-gp283 or -np396 were induced only if epitopes were presented directly on MHC class I molecules of the immunizing cell. The broader repertoire and the higher CTL frequencies induced after vaccination with haplotype-matched tumor cells resulted in more efficient anti-tumor and antiviral protection. Firstly, our results indicate that certain virus and tumor antigens may not be detected by CD8(+) T cells because of impaired cross-priming. Secondly, efficient cross-priming contributes to the immunodominant nature of a tumor-specific CTL epitope. Thirdly, vaccine strategies using autologous or syngenic antigen-expressing cells induce a broader repertoire of tumor-specific CTL and higher CTL frequencies.
Resumo:
The function of antigen-specific CD8+ T cells, which may protect against both infectious and malignant diseases, can be impaired by ligation of their inhibitory receptors, which include CTL-associated protein 4 (CTLA-4) and programmed cell death 1 (PD-1). Recently, B and T lymphocyte attenuator (BTLA) was identified as a novel inhibitory receptor with structural and functional similarities to CTLA-4 and PD-1. BTLA triggering leads to decreased antimicrobial and autoimmune T cell responses in mice, but its functions in humans are largely unknown. Here we have demonstrated that as human viral antigen-specific CD8+ T cells differentiated from naive to effector cells, their surface expression of BTLA was gradually downregulated. In marked contrast, human melanoma tumor antigen-specific effector CD8+ T cells persistently expressed high levels of BTLA in vivo and remained susceptible to functional inhibition by its ligand herpes virus entry mediator (HVEM). Such persistence of BTLA expression was also found in tumor antigen-specific CD8+ T cells from melanoma patients with spontaneous antitumor immune responses and after conventional peptide vaccination. Remarkably, addition of CpG oligodeoxynucleotides to the vaccine formulation led to progressive downregulation of BTLA in vivo and consequent resistance to BTLA-HVEM-mediated inhibition. Thus, BTLA activation inhibits the function of human CD8+ cancer-specific T cells, and appropriate immunotherapy may partially overcome this inhibition.
Resumo:
Chronic myelogenous leukemia (CML) is a malignant myeloproliferative disease of hematopoietic stem cells. The disease progresses after several years from an initial chronic phase to a blast phase. Leukemia-specific T cells are regularly detected in CML patients and may be involved in the immunological control of the disease. Here, we analyzed the role of leukemia-specific CD8(+) T cells in CML disease control and the mechanism that maintains CD8(+) T-cell immunosurveillance in a retroviral-induced murine CML model. To study antigen-specific immune responses, the glycoprotein of the lymphocytic choriomeningitis virus was used as model leukemia antigen. Leukemia-specific CTL activity was detectable in vivo in CML mice and depletion of CD8(+) T cells rapidly led to disease progression. CML-specific CTL were characterized by the expression of the IL-7 receptor -chain. In addition, leukemia cells produced IL-7 that was crucial for the maintenance of leukemia-specific CTL and for disease control. Therefore, CML cells maintain the specific CD8(+) T-cell-mediated immune control by IL-7 secretion. This results in prolonged control of disease and probably contributes to the characteristic chronic phase of the disease.
Resumo:
Lymphocytic choriomeningitis virus (LCMV) exhibits natural tropism for dendritic cells and represents the prototypic infection that elicits protective CD8(+) T cell (cytotoxic T lymphocyte (CTL)) immunity. Here we have harnessed the immunobiology of this arenavirus for vaccine delivery. By using producer cells constitutively synthesizing the viral glycoprotein (GP), it was possible to replace the gene encoding LCMV GP with vaccine antigens to create replication-defective vaccine vectors. These rLCMV vaccines elicited CTL responses that were equivalent to or greater than those elicited by recombinant adenovirus 5 or recombinant vaccinia virus in their magnitude and cytokine profiles, and they exhibited more effective protection in several models. In contrast to recombinant adenovirus 5, rLCMV failed to elicit vector-specific antibody immunity, which facilitated re-administration of the same vector for booster vaccination. In addition, rLCMV elicited T helper type 1 CD4+ T cell responses and protective neutralizing antibodies to vaccine antigens. These features, together with low seroprevalence in humans, suggest that rLCMV may show utility as a vaccine platform against infectious diseases and cancer.
Resumo:
Colour polymorphisms have fascinated evolutionary ecologists for a long time. Yet, knowledge on the mechanisms that allow their persistence is restricted to a handful of well-studied cases. We studied two species of Lake Victoria cichlid fish, Neochromis omnicaeruleus and Neochromis greenwoodi, exhibiting very similar sex-linked colour polymorphisms. The ecology and behaviour of one of these species is well studied, with colour-based mating and aggression preferences. Here, we ask whether the selection potentially resulting from female and male mating preferences and aggression biases reduces gene flow between the colour morphs and permits differentiation in traits other than colour. Over the past 14 years, the frequencies of colour morphs have somewhat oscillated, but there is no evidence for directional change, suggesting the colour polymorphism is persistent on an ecological timescale. We find limited evidence of ecomorphological differentiation between sympatric ancestral (plain) and derived (blotched) colour morphs. We also find significantly nonrandom genotypic assignment and an excess of linkage disequilibrium in the plain morph, which together with previous information on mating preferences suggests nonrandom mating between colour morphs. This, together with negative frequency-dependent sexual selection, found in previous studies, may facilitate maintenance of these polymorphisms in sympatry
Resumo:
With the publication of the quality guideline ICH Q9 "Quality Risk Management" by the International Conference on Harmonization, risk management has already become a standard requirement during the life cycle of a pharmaceutical product. Failure mode and effect analysis (FMEA) is a powerful risk analysis tool that has been used for decades in mechanical and electrical industries. However, the adaptation of the FMEA methodology to biopharmaceutical processes brings about some difficulties. The proposal presented here is intended to serve as a brief but nevertheless comprehensive and detailed guideline on how to conduct a biopharmaceutical process FMEA. It includes a detailed 1-to-10-scale FMEA rating table for occurrence, severity, and detectability of failures that has been especially designed for typical biopharmaceutical processes. The application for such a biopharmaceutical process FMEA is widespread. It can be useful whenever a biopharmaceutical manufacturing process is developed or scaled-up, or when it is transferred to a different manufacturing site. It may also be conducted during substantial optimization of an existing process or the development of a second-generation process. According to their resulting risk ratings, process parameters can be ranked for importance and important variables for process development, characterization, or validation can be identified. LAY ABSTRACT: Health authorities around the world ask pharmaceutical companies to manage risk during development and manufacturing of pharmaceuticals. The so-called failure mode and effect analysis (FMEA) is an established risk analysis tool that has been used for decades in mechanical and electrical industries. However, the adaptation of the FMEA methodology to pharmaceutical processes that use modern biotechnology (biopharmaceutical processes) brings about some difficulties, because those biopharmaceutical processes differ from processes in mechanical and electrical industries. The proposal presented here explains how a biopharmaceutical process FMEA can be conducted. It includes a detailed 1-to-10-scale FMEA rating table for occurrence, severity, and detectability of failures that has been especially designed for typical biopharmaceutical processes. With the help of this guideline, different details of the manufacturing process can be ranked according to their potential risks, and this can help pharmaceutical companies to identify aspects with high potential risks and to react accordingly to improve the safety of medicines.
Resumo:
Biological diversity and its constituent chemical diversity have served as one of the richest sources of bioprospecting leading to the discovery of some of the most important bioactive molecules for mankind. Despite this excellent record, in the recent past, however, bioprospecting of biological resources has met with little success; there has been a perceptible decline in the discovery of novel bioactive compounds. Several arguments have been proposed to explain the current poor success in bioprospecting. Among them, it has been argued that to bioprospect more biodiversity may not necessarily be productive, considering that chemical and functional diversity might not scale with biological diversity. In this paper, we offer a critique on the current perception of biodiversity and chemodiversity and ask to what extent it is relevant in the context of bioprospecting. First, using simple models, we analyze the relation among biodiversity, chemodiversity and functional redundancies in chemical plans of plants and argue that the biological space for exploration might still be wide open. Second, in the context of future bioprospecting, we argue that brute-force high throughput screening approaches alone are insufficient and cost ineffective in realizing bioprospecting success. Therefore, intelligent or non-random approaches to bioprospecting need to be adopted. We review here few examples of such approaches and show how these could be further developed and used in the future to accelerate the pace of discovery.
Resumo:
This Letter presents a measurement of the W+ W- production cross section in sqrt(s) = 7 TeV pp collisions by the ATLAS experiment, using 34 pb(-1) of integrated luminosity produced by the Large Hadron Collider at CERN. Selecting events with two isolated leptons, each either an electron or a muon, 8 candidate events are observed with an expected background of 1.7 ± 0.6 events. The measured cross section is 41(-16)(+20)(stat) ± 5(syst)±1(lumi) pb, which is consistent with the standard model prediction of 44 ± 3 pb calculated at next-to-leading order in QCD.
Resumo:
This Letter presents the first search for a heavy particle decaying into an e ± μ(-/+) final state in sqrt[s] = 7 TeV pp collisions at the LHC. The data were recorded by the ATLAS detector during 2010 and correspond to a total integrated luminosity of 35 pb(-1). No excess above the standard model background expectation is observed. Exclusions at 95% confidence level are placed on two representative models. In an R-parity violating supersymmetric model, tau sneutrinos with a mass below 0.75 TeV are excluded, assuming all R-parity violating couplings are zero except λ(311)' = 0.11 and λ312 = 0.07. In a lepton flavor violating model, a Z'-like vector boson with masses of 0.70-1.00 TeV and corresponding cross sections times branching ratios of 0.175-0.183 pb is excluded. These results extend to higher mass R-parity violating sneutrinos and lepton flavor violating Z's than previous constraints from the Tevatron.
Resumo:
Azimuthal decorrelations between the two central jets with the largest transverse momenta are sensitive to the dynamics of events with multiple jets. We present a measurement of the normalized differential cross section based on the full data set (∫Ldt=36 pb(-1)) acquired by the ATLAS detector during the 2010 sqrt(s)=7 TeV proton-proton run of the LHC. The measured distributions include jets with transverse momenta up to 1.3 TeV, probing perturbative QCD in a high-energy regime.