29 resultados para ARM MUSCLE AREA
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
To quantitatively compare the muscle cross-sectional areas (CSAs) of the cervical muscles in symptomatic acute whiplash patients versus healthy controls. We hypothesized, that symptomatic whiplash patients have smaller cervical muscle CSAs than matched controls and that smaller cervical muscle CSAs in women might explain that women more frequently are symptomatic after whiplash injury than men.
Resumo:
To investigate the role of the cervical spine muscles in whiplash injury. We hypothesized that (i) cervical muscle hypotrophy would be evident after a 6-month follow-up and, (ii) cervical muscle hypotrophy would correlate with symptom persistence probably related to pain or inactivity.
Resumo:
Background Protein-energy-malnutrition (PEM) is common in people with end stage kidney disease (ESKD) undergoing maintenance haemodialysis (MHD) and correlates strongly with mortality. To this day, there is no gold standard for detecting PEM in patients on MHD. Aim of Study The aim of this study was to evaluate if Nutritional Risk Screening 2002 (NRS-2002), handgrip strength measurement, mid-upper arm muscle area (MUAMA), triceps skin fold measurement (TSF), serum albumin, normalised protein catabolic rate (nPCR), Kt/V and eKt/V, dry body weight, body mass index (BMI), age and time since start on MHD are relevant for assessing PEM in patients on MHD. Methods The predictive value of the selected parameters on mortality and mortality or weight loss of more than 5% was assessed. Quantitative data analysis of the 12 parameters in the same patients on MHD in autumn 2009 (n = 64) and spring 2011 (n = 40) with paired statistical analysis and multivariate logistic regression analysis was performed. Results Paired data analysis showed significant reduction of dry body weight, BMI and nPCR. Kt/Vtot did not change, eKt/v and hand grip strength measurements were significantly higher in spring 2011. No changes were detected in TSF, serum albumin, NRS-2002 and MUAMA. Serum albumin was shown to be the only predictor of death and of the combined endpoint “death or weight loss of more than 5%”. Conclusion We now screen patients biannually for serum albumin, nPCR, Kt/V, handgrip measurement of the shunt-free arm, dry body weight, age and time since initiation of MHD.
Resumo:
We hypothesized that network analysis is useful to expose coordination between whole body and myocellular levels of energy metabolism and can identify entities that underlie skeletal muscle's contribution to growth hormone-stimulated lipid handling and metabolic fitness. We assessed 112 metabolic parameters characterizing metabolic rate and substrate handling in tibialis anterior muscle and vascular compartment at rest, after a meal and exercise with growth hormone replacement therapy (GH-RT) of hypopituitary patients (n = 11). The topology of linear relationships (| r | ≥ 0.7, P ≤ 0.01) and mutual dependencies exposed the organization of metabolic relationships in three entities reflecting basal and exercise-induced metabolic rate, triglyceride handling, and substrate utilization in the pre- and postprandial state, respectively. GH-RT improved aerobic performance (+5%), lean-to-fat mass (+19%), and muscle area of tibialis anterior (+2%) but did not alter its mitochondrial and capillary content. Concomitantly, connectivity was established between myocellular parameters of mitochondrial lipid metabolism and meal-induced triglyceride handling in serum. This was mediated via the recruitment of transcripts of muscle lipid mobilization (LIPE, FABP3, and FABP4) and fatty acid-sensitive transcription factors (PPARA, PPARG) to the metabolic network. The interdependence of gene regulatory elements of muscle lipid metabolism reflected the norm in healthy subjects (n = 12) and distinguished the regulation of the mitochondrial respiration factor COX1 by GH and endurance exercise. Our observations validate the use of network analysis for systems medicine and highlight the notion that an improved stochiometry between muscle and whole body lipid metabolism, rather than alterations of single bottlenecks, contributes to GH-driven elevations in metabolic fitness.
Resumo:
In 13 patients, the development of supraspinatus muscle atrophy and fatty infiltration after rotator cuff tendon repair was quantified prospectively via magnetic resonance imaging. Intraoperative electrical nerve stimulation at repair showed that the maximal supraspinatus tension (up to 200 N) strongly correlated with the anatomic cross-sectional muscle area and with muscle fatty infiltration (ranging from 12 N/cm(2) in Goutallier stage 3 to 42 N/cm(2) in Goutallier stage 0). Within 1 year after successful tendon repair (n = 8), fatty infiltration did not recover, and atrophy improved partially at best; however, if the repair failed (n = 5), atrophy and fatty infiltration progressed significantly. The ability of the rotator cuff muscles to develop tension not only correlates with their atrophy but also closely correlates with their degree of fatty infiltration. With current repair techniques, atrophy and fatty infiltration appear to be irreversible, despite successful tendon repair. Unexpectedly, not only weak but also very strong muscles are at risk for repair failure.
Resumo:
BACKGROUND: Decreased bone mineral density has been reported in children with inflammatory bowel disease (IBD). We used peripheral quantitative computed tomography (pQCT) to assess bone mineralization, geometry, and muscle cross-sectional area (CSA) in pediatric IBD. METHODS: In a cross-sectional study, pQCT of the forearm was applied in 143 IBD patients (mean age 13.9 +/- 3.5 years); 29% were newly diagnosed, 98 had Crohn's disease, and 45 had ulcerative colitis. Auxological data, cumulative glucocorticoid dose, disease activity indices, laboratory markers for inflammation, and bone metabolism were related to the results of pQCT. RESULTS: Patients were compromised in height (-0.82 +/- 1.1 SD), weight (-0.77 +/- 1.0 SD), muscle mass (-1.12 +/- 1.0 SD), and total bone cross-sectional area (-0.79 +/- 1.0 SD) compared to age- and sex-matched healthy controls (z-scores). In newly diagnosed patients, the ratio of bone mineral mass per muscle CSA was higher than in those with longer disease duration (1.00 versus 0.30, P = 0.007). Serum albumin level and disease activity correlated with muscle mass, accounting for 41.0% of variability in muscle mass (P < 0.01). The trabecular bone mineral density z-score was on average at the lower normal level (-0.40 +/- 1.3 SD, P < 0.05). CONCLUSIONS: Reduced bone geometry was explained only in part by reduced height. Bone disease in children with IBD seems to be secondary to muscle wasting, which is already present at diagnosis. With longer disease duration, bone adapts to the lower muscle CSA. Serum albumin concentration is a good marker for muscle wasting and abnormal bone development.
Resumo:
The effect of acetyl-L-carnitine (ALCAR) supplementation to 3-month-old rats in normal-loading and unloading conditions has been here investigated by a combined morphological, biochemical and transcriptional approach to test whether ALCAR might cause a remodeling of the metabolic/contractile phenotype of soleus muscle. Morphological assessment demonstrated an increase of type I oxidative fiber content and cross-sectional area in ALCAR-treated animals both in normal-loading and in unloading conditions. ALCAR prevented loss of mitochondrial mass in unloaded animals whereas no ALCAR-dependent increase of mitochondrial mass occurred in normal-loaded muscle. Validated microarray analysis delineated an ALCAR-induced maintenance of a slow-oxidative expression program only in unloaded soleus muscle. Indeed, the muscle adjustment of the expression profile of factors underlying mitochondrial oxidative metabolism, protein turnover, fiber type differentiation and an adaptation of voltage-gated ion channel expression was distinguishable with respect to the loading status. This selectivity may suggest a key role of muscle loading status in the manifestation of ALCAR effects. The results extend to a broader level of biological informations the previous notion on ALCAR positive effect in rat soleus muscle during unloading and point to a role of ALCAR for the maintenance of its slow-oxidative fiber character.
Resumo:
OBJECTIVES:: Metacarpal juxta-articular bone is altered in Rheumatoid Arthritis (RA). However, a detailed analysis of disease related geometrical adaptations of the metacarpal shaft is missing. The aim of the present study was to assess the role of RA disease, forearm muscle cross-sectional area (CSA), age and sex on bone geometry at the metacarpal shaft. METHODS:: In 64 RA patients and 128 control subjects geometric properties of the third metacarpal bone mid-shaft and forearm muscle CSA were measured by peripheral quantitative computed tomography (pQCT). Linear models were performed for cortical CSA, total bone CSA, polar stress-strain Index (polar SSI, a surrogate for bone's resistance to bending and torsion), cortical thickness and Metacarpal Index (MI=cortical CSA/total CSA) with explanatory variables muscle CSA, age, RA status and sex. RESULTS:: Forearm muscle CSA was associated with cortical and total metacarpal CSA, and polar SSI. RA group status was associated with all bone parameters except cortical CSA. There was a significant interaction between RA status and age, indicating that the RA group had a greater age-related decrease in cortical CSA, cortical thickness and MI. CONCLUSIONS:: Bone geometry of the metacarpal shaft is altered in RA patients compared to healthy controls. While bone mass of the metacarpal shaft is adapted to forearm muscle mass, cortical thickness and MI are reduced but outer bone shaft circumference and polar SSI increased in RA patients. These adaptations correspond to an enhanced aging pattern in RA patients.
Resumo:
Tissue engineering has been increasingly brought to the scientific spotlight in response to the tremendous demand for regeneration, restoration or substitution of skeletal or cardiac muscle after traumatic injury, tumour ablation or myocardial infarction. In vitro generation of a highly organized and contractile muscle tissue, however, crucially depends on an appropriate design of the cell culture substrate. The present work evaluated the impact of substrate properties, in particular morphology, chemical surface composition and mechanical properties, on muscle cell fate. To this end, aligned and randomly oriented micron (3.3±0.8 μm) or nano (237±98 nm) scaled fibrous poly(ε-caprolactone) non-wovens were processed by electrospinning. A nanometer-thick oxygen functional hydrocarbon coating was deposited by a radio frequency plasma process. C2C12 muscle cells were grown on pure and as-functionalized substrates and analysed for viability, proliferation, spatial orientation, differentiation and contractility. Cell orientation has been shown to depend strongly on substrate architecture, being most pronounced on micron-scaled parallel-oriented fibres. Oxygen functional hydrocarbons, representing stable, non-immunogenic surface groups, were identified as strong triggers for myotube differentiation. Accordingly, the highest myotube density (28±15% of total substrate area), sarcomeric striation and contractility were found on plasma-coated substrates. The current study highlights the manifold material characteristics to be addressed during the substrate design process and provides insight into processes to improve bio-interfaces.
Optimizing human in vivo dosing and delivery of β-alanine supplements for muscle carnosine synthesis
Resumo:
Interest into the effects of carnosine on cellular metabolism is rapidly expanding. The first study to demonstrate in humans that chronic β-alanine (BA) supplementation (~3-6 g BA/day for ~4 weeks) can result in significantly augmented muscle carnosine concentrations (>50%) was only recently published. BA supplementation is potentially poised for application beyond the niche exercise and performance-enhancement field and into other more clinical populations. When examining all BA supplementation studies that directly measure muscle carnosine (n=8), there is a significant linear correlation between total grams of BA consumed (of daily intake ranges of 1.6-6.4 g BA/day) versus both the relative and absolute increases in muscle carnosine. Supporting this, a recent dose-response study demonstrated a large linear dependency (R2=0.921) based on the total grams of BA consumed over 8 weeks. The pre-supplementation baseline carnosine or individual subjects' body weight (from 65 to 90 kg) does not appear to impact on subsequent carnosine synthesis from BA consumption. Once muscle carnosine is augmented, the washout is very slow (~2%/week). Recently, a slow-release BA tablet supplement has been developed showing a smaller peak plasma BA concentration and delayed time to peak, with no difference in the area under the curve compared to pure BA in solution. Further, this slow-release profile resulted in a reduced urinary BA loss and improved retention, while at the same time, eliciting minimal paraesthesia symptoms. However, our complete understanding of optimizing in vivo delivery and dosing of BA is still in its infancy. Thus, this review will clarify our current knowledge of BA supplementation to augment muscle carnosine as well as highlight future research questions on the regulatory points of control for muscle carnosine synthesis.
Resumo:
Background Activation of the endothelium, complement activation and generation of cytokines are known events during ischemia-reperfusion (I/R) that mediate tissue injury. Our aim was to elucidate their respective participation at the onset of the reperfusion phase. Tourniquet application in hand surgery causes short-term ischemia, followed by reperfusion and was therefore used as the model in this study. Methods Ten patients were included in the study after obtaining informed consent. A tourniquet was placed on the upper arm and inflated to 250 mmHg for 116 ± 16 min, during which the surgery was performed. Venous blood and tissue samples from the surgical area were taken at baseline as well as 0, 2, and 10 min after reperfusion and analyzed for the following parameters: Endothelial integrity and/or activation were analyzed by measuring heparan sulfate and syndecan-1 in serum, and vWF, heparan sulfate proteoglycan as well as CD31on tissue. Complement activation was determined by C3a and C4d levels in plasma, levels of C1-inhibitor in serum, and IgG, IgM, C3b/c, and C4b/c deposition on tissue. Cytokines and growth factors IL-5, IL-6, IL-7, IL-8, IL-10, IL-17, G-CSF, GM-CSF, MCP-1, TNFα, VEGF, and PDGF bb were measured in the serum. Finally, CK-MM levels were determined in plasma as a measure for muscle necrosis. Results Markers for endothelial activation and/or integrity as well as complement activation showed no significant changes until 10 min reperfusion. Among the measured cytokines, IL-6, IL-7, IL-17, TNFα, GM-CSF, VEGF, and PDGF bb were significantly increased at 10 min reperfusion with respect to baseline. CK-MM showed a rise from baseline at the onset of reperfusion (p < 0.001) and dropped again at 2 min (p < 0.01) reperfusion, suggesting ischemic muscle damage. Conclusions In this clinical model of I/R injury no damage to the endothelium, antibody deposition or complement activation were observed during early reperfusion. However, an increase of pro-inflammatory cytokines and growth factors was shown, suggesting a contribution of these molecules in the early stages of I/R injury.
Resumo:
Low-intensity concentric (CET) and eccentric (EET) endurance-type training induce specific structural adaptations in skeletal muscle. We evaluated to which extent steady-state adaptations in transcript levels are involved in the compensatory alterations of muscle mitochondria and myofibrils with CET versus EET at a matched metabolic exercise intensity of medicated, stable coronary patients (CAD). Biopsies were obtained from vastus lateralis muscle before and after 8 weeks of CET (n=6) or EET (n=6). Transcript levels for factors involved in mitochondrial biogenesis (PGC-1alpha, Tfam), mitochondrial function (COX-1, COX-4), control of contractile phenotype (MyHC I, IIa, IIx) as well as mechanical stress marker (IGF-I) were quantified using an reverse-transcriptase polymerase chain reaction approach. After 8 weeks of EET, a reduction of the COX-4 mRNA level by 41% and a tendency for a drop in Tfam transcript concentration (-33%, P=0.06) was noted. This down-regulation corresponded to a drop in total mitochondrial volume density. MyHC-IIa transcript levels were specifically decreased after EET, and MyHC-I mRNA showed a trend towards a reduction (P=0.08). Total fiber cross-sectional area was not altered. After CET and EET, the IGF-I mRNA level was significantly increased. The PGC-1alpha significantly correlated with Tfam, and both PGC-1alpha and Tfam significantly correlated with COX-1 and COX-4 mRNAs. Post-hoc analysis identified significant interactions between the concurrent medication and muscular transcript levels as well as fiber size. Our findings support the concept that specific transcriptional adaptations mediate the divergent mitochondrial response of muscle cells to endurance training under different load condition and indicate a mismatch of processes related to muscle hypertrophy in medicated CAD patients.
Resumo:
OBJECTIVE: To describe the advantages and surgical technique of a trochanteric flip osteotomy in combination with a Kocher-Langenbeck approach for the treatment of selected acetabular fractures. DESIGN: Consecutive series, teaching hospital. METHODS: Through mobilization of the vastus lateralis muscle, a slice of the greater trochanter with the attached gluteus medius muscle can be flipped anteriorly. The gluteus minimus muscle can then be easily mobilized, giving free access to the posterosuperior and superior acetabular wall area. Damage to the abductor muscles by vigorous retraction can be avoided, potentially resulting in less ectopic ossification. Ten consecutive cases of acetabular fractures treated with this approach are reported. In eight cases, an anatomic reduction was achieved; in the remaining two cases with severe comminution, the reduction was within one to three millimeters. The trochanteric fragment was fixed with two 3.5-millimeter cortical screws. RESULTS: All osteotomies healed in anatomic position within six to eight weeks postoperatively. Abductor strength was symmetric in eight patients and mildly reduced in two patients. Heterotopic ossification was limited to Brooker classes 1 and 2 without functional impairment at an average follow-up of twenty months. No femoral head necrosis was observed. CONCLUSION: This technique allows better visualization, more accurate reduction, and easier fixation of cranial acetabular fragments. Cranial migration of the greater trochanter after fixation with two screws is unlikely to occur because of the distal pull of the vastus lateralis muscle, balancing the cranial pull of the gluteus medius muscle.
Resumo:
OBJECTIVE: To describe the in vitro effects of bethanechol on contractility of smooth muscle preparations from the small intestines of healthy cows and define the muscarinic receptor subtypes involved in mediating contraction. SAMPLE POPULATION: Tissue samples from the duodenum and jejunum collected immediately after slaughter of 40 healthy cows. PROCEDURES: Cumulative concentration-response curves were determined for the muscarinic receptor agonist bethanechol with or without prior incubation with subtype-specific receptor antagonists in an organ bath. Effects of bethanechol and antagonists and the influence of intestinal location on basal tone, maximal amplitude (A(max)), and area under the curve (AUC) were evaluated. RESULTS: Bethanechol induced a significant, concentration-dependent increase in all preparations and variables. The effect of bethanechol was more pronounced in jejunal than in duodenal samples and in circular than in longitudinal preparations. Significant inhibition of the effects of bethanechol was observed after prior incubation with muscarinic receptor subtype M(3) antagonists (more commonly for basal tone than for A(max) and AUC). The M(2) receptor antagonists partly inhibited the response to bethanechol, especially for basal tone. The M(3) receptor antagonists were generally more potent than the M(2) receptor antagonists. In a protection experiment, an M(3) receptor antagonist was less potent than when used in combination with an M(2) receptor antagonist. Receptor antagonists for M(1) and M(4) did not affect contractility variables. CONCLUSIONS AND CLINICAL RELEVANCE: Bethanechol acting on muscarinic receptor sub-types M(2) and M(3) may be of clinical use as a prokinetic drug for motility disorders of the duodenum and jejunum in dairy cows.
Resumo:
BACKGROUND AND OBJECTIVE: The aim of this study was to determine which of two clinically applied methods, electromyography or acceleromyography, was less affected by external disturbances, had a higher sensitivity and which would provide the better input signal for closed loop control of muscle relaxation. METHODS: In 14 adult patients, anaesthesia was induced with intravenous opioids and propofol. The response of the thumb to ulnar nerve stimulation was recorded on the same arm. Mivacurium was used for neuromuscular blockade. Under stable conditions of relaxation, the infusion-rate was decreased and the effects of turning the hand were investigated. RESULTS: Electromyography and acceleromyography both reflected the change of the infusion rate (P = 0.015 and P < 0.001, respectively). Electromyography was significantly less affected by the hand-turn (P = 0.008) than acceleromyography. While zero counts were detected with acceleromyography, electromyography could still detect at least one count in 51.1%. CONCLUSIONS: Electromyography is more reliable for use in daily practice as it is less influenced by external disturbances than acceleromyography.